181,867 research outputs found

    Cut time in sub-Riemannian problem on Engel group

    Get PDF
    The left-invariant sub-Riemannian problem on the Engel group is considered. The problem gives the nilpotent approximation to generic nonholonomic systems in four-dimensional space with two-dimensional control, for instance to a system which describes motion of mobile robot with a trailer. The global optimality of extremal trajectories is studied via geometric control theory. The global diffeomorphic structure of the exponential mapping is described. As a consequence, the cut time is proved to be equal to the first Maxwell time corresponding to discrete symmetries of the exponential mapping

    Electron Bloch Oscillations and Electromagnetic Transparency of Semiconductor Superlattices in Multi-Frequency Electric Fields

    Full text link
    We examine phenomenon of electromagnetic transparency in semiconductor superlattices (having various miniband dispersion laws) in the presence of multi-frequency periodic and non-periodic electric fields. Effects of induced transparency and spontaneous generation of static fields are discussed. We paid a special attention on a self-induced electromagnetic transparency and its correlation to dynamic electron localization. Processes and mechanisms of the transparency formation, collapse, and stabilization in the presence of external fields are studied. In particular, we present the numerical results of the time evolution of the superlattice current in an external biharmonic field showing main channels of transparency collapse and its partial stabilization in the case of low electron density superlattices

    Cooper pairing of electrons and holes in graphene bilayer: Correlation effects

    Full text link
    Cooper pairing of spatially separated electrons and holes in graphene bilayer is studied beyond the mean-field approximation. Suppression of the screening at large distances, caused by appearance of the gap, is considered self-consistently. A mutual positive feedback between appearance of the gap and enlargement of the interaction leads to a sharp transition to correlated state with greatly increased gap above some critical value of the coupling strength. At coupling strength below the critical, this correlation effect increases the gap approximately by a factor of two. The maximal coupling strength achievable in experiments is close to the critical value. This indicated importance of correlation effects in closely-spaced graphene bilayers at weak substrate dielectric screening. Another effect beyond mean-field approximation considered is an influence of vertex corrections on the pairing, which is shown to be very weak.Comment: 6 pages, 5 figures; some references were adde
    • …
    corecore