3,672 research outputs found

    1-Methyl-3,5-bis­(3-methyl­phen­yl)benzene

    Get PDF
    In the title compound, C21H20, the dihedral angles formed by the central benzene ring with the outer benzene rings are 21.43 (6) and 31.70 (4)°. The crystal packing is stabilized by a weak π–π stacking inter­action, with a centroid–centroid distance of 3.843 (3) Å

    Trigger efficiencies at BES III

    Full text link
    Trigger efficiencies at BES III were determined for both the J/psi and psi' data taking of 2009. Both dedicated runs and physics datasets are used; efficiencies are presented for Bhabha-scattering events, generic hadronic decay events involving charged tracks, dimuon events and psi' -> pi+pi-J/psi, J/psi -> l+l- events (l an electron or muon). The efficiencies are found to lie well above 99% for all relevant physics cases, thus fulfilling the BES III design specifications.Comment: 6 pages, 4 figure

    Influence of citric acid and water on thermoplastic wheat flour/poly(lactic acid) blends. I: Thermal, mechanical and morphological properties

    Get PDF
    Wheat flour was plasticized with glycerol and compounded with poly(lactic acid) in a one-step twin-screw extrusion process in the presence of citric acid with or without extra water. The influence of these additives on process parameters and thermal, mechanical and morphological properties of injected samples from the prepared blends, was then studied. Citric acid acted as a compatibilizer by promoting depolymerization of both starch and PLA. For an extrusion without extra water, the amount of citric acid (2 parts for 75 parts of flour, 25 parts of PLA and 15 parts of glycerol) has to be limited to avoid mechanical properties degradation. Water, added during the extrusion, improved the whole process, minimizing PLA depolymerization, favoring starch plasticization by citric acid and thus improving phases repartition

    Src-family protein tyrosine kinases: a promising target for treating chronic pain

    Get PDF
    Abstract Despite growing knowledge of the mechanisms of chronic pain, it remains a major challenge facing clinical practice. Src-family protein tyrosine kinases (SFKs), a group of non-receptor protein tyrosine kinases, have been implicated in neuronal development and synaptic plasticity. SFKs are critically central to various transmembrane receptors e.g. G-protein coupled receptor (GPCR), EphB receptor (EphBR), increased intracellular calcium, epidermal growth factor (EGF) and other growth factors that regulate the phosphorylation of N-methyl-D-aspartic acid receptor (NMDAR) 2B subunit, thus contributing to the development of chronic pain. SFKs have also been regarded as an important point of convergence of intracellular signaling components that regulate microglia functions and the immune response. Additionally, intrathecal administration of SFKs inhibitors significantly alleviates mechanical allodynia in different chronic pain models. Thus, here we reviewed the current evidence of the role of SFKs in the development of chronic pain caused by complete Freund's adjuvant (CFA) injection, peripheral nerve injury (PNI), streptozotocin (STZ) injection and bone metastasis. Moreover, the role of SFKs on the development of morphine tolerance has also been discussed. Management of SFKs therefore emerged as a potential therapeutic target for the treatment of chronic pain in terms of safety and efficacy. Key words Chronic pain; Src-family protein tyrosine kinases; N-methyl-D-aspartic acid receptor; Microglia

    PI3K/Akt pathway: a potential therapeutic target for chronic pain

    Get PDF
    Chronic pain is among the most disabling and costly disorders, with prevalence ranging from 10% to 55%. However, current therapeutic strategies for chronic pain are unsatisfactory due to our poor understanding of its mechanisms. Thus, novel therapeutic targets need to be found in order to improve these patients' quality of life. PI3K and its downstream Akt are widely expressed in the spinal cord, particularly in the laminae I-IV of the dorsal horn, where nociceptive C and Aδ fibers of primary afferents principally terminate. Recent studies have demonstrated their critical roles in the development and maintenance of chronic pain. In this review, we summarized the roles and mechanisms of PI3K/Akt pathway in the progression of chronic pain through sciatic nerve injury, diabetic neuropathy, spinal cord injury, bone cancer, opioid tolerance, or opioid-induced hyperalgesia

    Proanthocyanidins induce analgesic and anxiolytic effects in spared nerve injured mice by decreasing in vivo firing rate of pyramidal cells in the insular cortex

    Get PDF
    Neuropathic pain is one of the most common symptoms of clinical pain that often accompanied by severe emotional changes such as anxiety. However, the treatment for comorbidity of chronic pain and anxiety is limited. Proanthocyanidins (PACs), a group of polyphenols enriched in plants and foods, have been reported to cause pain-alleviating effects. However, whether and how PACs induce analgesic and anxiolytic effects in the central nervous system remain obscure. In the present study, we observed that microinjection of PACs into the insular cortex (IC) inhibited mechanical and spontaneous pain sensitivity and anxiety-like behaviors in mice with spared nerve injury. Meanwhile, PACs application exclusively reduced the FOS expression in the pyramidal cells but not interneurons in the IC. In vivo electrophysiological recording of the IC further showed that PACS application inhibited the firing rate of spikes of pyramidal cells of IC in neuropathic pain mice. In summary, PACs induce analgesic and anxiolytic effects by inhibiting the spiking of pyramidal cells of the IC in mice with neuropathic pain, which should provide new evidence of PACs as the potential clinical treatment of chronic pain and anxiety comorbidity

    The role of spinal GABAB receptors in cancer-induced bone pain in rats

    Get PDF
    Cancer-induced bone pain (CIBP) remains a major challenge in advanced cancer patients due to our lack of understanding of its mechanisms. Previous studies have demonstrated the vital role of GABAB receptors (GABABRs) in regulating nociception and various neuropathic pain models have shown diminished activity of GABABRs. However, the role of spinal GABABRs in CIBP remains largely unknown. In this study, we investigated the specific cellular mechanisms of GABABRs in the development and maintenance of CIBP in rats. Our behavioral results show that both acute and chronic intrathecal treatment with baclofen, a GABABR agonist, significantly attenuated CIBP-induced mechanical allodynia and ambulatory pain. The expression levels of GABABRs were significantly decreased in a time-dependent manner and colocalized mostly with neuron and a minority with astrocyte and microglia. Chronic treatment with baclofen restored the expression of GABABRs and markedly inhibited the activation of cAMP-dependent protein kinase (PKA) and the cAMP-response element-binding protein (CREB) signaling pathway

    Investigating a Global Collapsing Hub-Filament Cloud G326.611+0.811

    Full text link
    We present the dynamics study toward the G326.611+0.811 (G326) hub-filament-system (HFS) cloud using the new APEX observations of both 13^{13}CO and C18^{18}O (J = 2-1). The G326 HFS cloud constitutes a central hub and at least four hub-composing filaments that are divided into a major branch of filaments (F1, and F2) and a side branch (F3-F5). The cloud holds ongoing high-mass star formation as characterised by three massive dense clumps (i.e., 370-1100 MM_{\odot} and 0.14-0.16 g cm2^{-2} for C1-C3) with the high clump-averaged mass infalling rates (>103>10^{-3} MM_{\odot} yr1^{-1}) within in the major filament branch, and the associated point sources bright at 70 μ\mum typical of young protostars. Along the five filaments, the velocity gradients are found in both 13^{13}CO and C18^{18}O (J = 2-1) emission, suggesting that the filament-aligned gravitational collapse toward the central hub (i.e., C2) is being at work for high-mass star formation therein. Moreover, a periodic velocity oscillation along the major filament branch is revealed in both 13^{13}CO and C18^{18}O (J = 2-1) emission with a characteristic wavelength of \sim3.5 pc and an amplitude of \sim0.31-0.38 km s1^{-1}. We suggest that this pattern of velocity oscillation in G326 could arise from the clump-forming gas motions induced by gravitational instability. Taking into account the prevalent velocity gradients, the fragmentation of the major branch of filaments, and the ongoing collapse of the three massive dense clumps, it is indicative that G326 is a HFS undergoing global collapse.Comment: 21 pages, 13 figures, 2 tables, Accepted for publication in Ap
    corecore