48,202 research outputs found

    Parameter Sensitivity Analysis of Social Spider Algorithm

    Full text link
    Social Spider Algorithm (SSA) is a recently proposed general-purpose real-parameter metaheuristic designed to solve global numerical optimization problems. This work systematically benchmarks SSA on a suite of 11 functions with different control parameters. We conduct parameter sensitivity analysis of SSA using advanced non-parametric statistical tests to generate statistically significant conclusion on the best performing parameter settings. The conclusion can be adopted in future work to reduce the effort in parameter tuning. In addition, we perform a success rate test to reveal the impact of the control parameters on the convergence speed of the algorithm

    Study of Λb→Λ(ϕ,η(′))\Lambda_b\to \Lambda (\phi,\eta^{(\prime)}) and Λb→ΛK+K−\Lambda_b\to \Lambda K^+K^- decays

    Full text link
    We study the charmless two-body Λb→Λ(ϕ,η(′))\Lambda_b\to \Lambda (\phi,\eta^{(\prime)}) and three-body Λb→ΛK+K−\Lambda_b\to \Lambda K^+K^- decays. We obtain B(Λb→Λϕ)=(3.53±0.24)×10−6{\cal B}(\Lambda_b\to \Lambda\phi)=(3.53\pm 0.24)\times 10^{-6} to agree with the recent LHCb measurement. However, we find that B(Λb→Λ(ϕ→)K+K−)=(1.71±0.12)×10−6{\cal B}(\Lambda_b\to \Lambda(\phi\to)K^+ K^-)=(1.71\pm 0.12)\times 10^{-6} is unable to explain the LHCb observation of B(Λb→ΛK+K−)=(15.9±1.2±1.2±2.0)×10−6{\cal B}(\Lambda_b\to\Lambda K^+ K^-)=(15.9\pm 1.2\pm 1.2\pm 2.0)\times 10^{-6}, which implies the possibility for other contributions, such as that from the resonant Λb→K−N∗, N∗→ΛK+\Lambda_b\to K^- N^*,\,N^*\to\Lambda K^+ decay with N∗N^* as a higher-wave baryon state. For Λb→Λη(′)\Lambda_b\to \Lambda \eta^{(\prime)}, we show that B(Λb→Λη, Λη′)=(1.47±0.35,1.83±0.58)×10−6{\cal B}(\Lambda_b\to \Lambda\eta,\,\Lambda\eta^\prime)= (1.47\pm 0.35,1.83\pm 0.58)\times 10^{-6}, which are consistent with the current data of (9.3−5.3+7.3,<3.1)×10−6(9.3^{+7.3}_{-5.3},<3.1)\times 10^{-6}, respectively. Our results also support the relation of B(Λb→Λη)≃B(Λb→Λη′){\cal B}(\Lambda_b\to \Lambda\eta) \simeq {\cal B}(\Lambda_b\to\Lambda\eta^\prime), given by the previous study.Comment: 8 pages, 1 figure, revised version accepted by EPJ

    Base Station Switching Problem for Green Cellular Networks with Social Spider Algorithm

    Full text link
    With the recent explosion in mobile data, the energy consumption and carbon footprint of the mobile communications industry is rapidly increasing. It is critical to develop more energy-efficient systems in order to reduce the potential harmful effects to the environment. One potential strategy is to switch off some of the under-utilized base stations during off-peak hours. In this paper, we propose a binary Social Spider Algorithm to give guidelines for selecting base stations to switch off. In our implementation, we use a penalty function to formulate the problem and manage to bypass the large number of constraints in the original optimization problem. We adopt several randomly generated cellular networks for simulation and the results indicate that our algorithm can generate superior performance

    Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes

    Get PDF
    In a thermally driven rotary motor made from double-walled carbon nanotubes, the rotor (inner tube) can be actuated to rotate within the stator (outer tube) when the environmental temperature is high enough. A sudden stoppage of the rotor can occur when the inner tube has been actuated to rotate at a stable high speed. To find the mechanisms of such sudden stoppages, eight motor models with the same rotor but different stators are built and simulated in the canonical NVT ensembles. Numerical results demonstrate that the sudden stoppage of the rotor occurs when the difference between radii is near 0.34 nm at a high environmental temperature. A smaller difference between radii does not imply easier activation of the sudden rotor stoppage. During rotation, the positions and electron density distribution of atoms at the ends of the motor show that a sp(1) bonded atom on the rotor is attracted by the sp(1) atom with the biggest deviation of radial position on the stator, after which they become two sp(2) atoms. The strong bond interaction between the two atoms leads to the loss of rotational speed of the rotor within 1 ps. Hence, the sudden stoppage is attributed to two factors: the deviation of radial position of atoms at the stator's ends and the drastic thermal vibration of atoms on the rotor in rotation. For a stable motor, sudden stoppage could be avoided by reducing deviation of the radial position of atoms at the stator's ends. A nanobrake can be, thus, achieved by adjusting a sp(1) atom at the ends of stator to stop the rotation of rotor quickly.The authors are grateful for financial support from the National Natural-Science-Foundation of China (Grant Nos. 50908190, 11372100)

    Multipole polarizability of a graded spherical particle

    Full text link
    We have studied the multipole polarizability of a graded spherical particle in a nonuniform electric field, in which the conductivity can vary radially inside the particle. The main objective of this work is to access the effects of multipole interactions at small interparticle separations, which can be important in non-dilute suspensions of functionally graded materials. The nonuniform electric field arises either from that applied on the particle or from the local field of all other particles. We developed a differential effective multipole moment approximation (DEMMA) to compute the multipole moment of a graded spherical particle in a nonuniform external field. Moreover, we compare the DEMMA results with the exact results of the power-law graded profile and the agreement is excellent. The extension to anisotropic DEMMA will be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication

    Possible ΔΔ\Delta\Delta dibaryons in the quark cluster model

    Full text link
    In the framework of RGM, the binding energy of one channel ΔΔ(3,0)\Delta\Delta_{(3,0)}(d∗d^*) and ΔΔ(0,3)\Delta\Delta_{(0,3)} are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the ΔΔ\Delta\Delta system makes the contribution of the relative kinetic energy operator between two clusters attractive. This is very beneficial for forming the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very important role on binding. The S-wave phase shifts and the corresponding scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure

    Non-leptonic two-body weak decays of Λc(2286)\Lambda_c(2286)

    Full text link
    We study the non-leptonic two-body weak decays of Λc+(2286)→BnM\Lambda_c^+(2286)\to {\bf B}_n M with Bn{\bf B}_n (MM) representing as the baryon (meson) states. Based on the SU(3)SU(3) flavor symmetry, we can describe most of the data reexamined by the BESIII Collaboration with higher precisions. However, our result of B(Λc+→pπ0)=(5.6±1.5)×10−4{\cal B}(\Lambda_c^+ \to p\pi^0)=(5.6\pm 1.5)\times 10^{-4} is larger than the current experimental limit of 3×10−43\times10^{-4} (90\% C.L.) by BESIII. In addition, we find that B(Λc+→Σ+K0)=(8.0±1.6)×10−4{\cal B}(\Lambda_c^+ \to \Sigma^+ K^0)=(8.0\pm 1.6)\times 10^{-4}, B(Λc+→Σ+η′)=(1.0−0.8+1.6)×10−2{\cal B}(\Lambda_c^+ \to \Sigma^+ \eta^\prime)=(1.0^{+1.6}_{-0.8})\times 10^{-2}, and B(Λc+→pη′)=(12.2−   8.7+14.3)×10−4{\cal B}(\Lambda_c^+ \to p \eta^\prime)=(12.2^{+14.3}_{-\,\,\,8.7})\times 10^{-4}, which are accessible to the BESIII experiments.Comment: 12 pages, 1 figure, revised version accepted by PL
    • …
    corecore