1,004 research outputs found

    Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules

    Get PDF
    Laboratory experiments were carried out to investigate the effect of the sludge loading, or the food-to-microorganism (F/M) ratio, on the rate of aerobic granulation and the size of the granules in biological wastewater treatment. Four column batch reactors were used with a similar sludge suspended solids (SS) concentration of around 2000 mg/L. The reactors were fed with a glucose-based wastewater at different chemical oxygen demand (COD) concentrations, resulting in F/M ratios from 0.3 to 1.1 g COD/g SS-d. A higher F/M ratio appeared to promote faster formation of larger granules and a lower F/M ratio led to slower formation of smaller granules. Upon complete granulation, the granules became rather stable in size, and the mean diameter of the granules in different reactors increased from 1.2 to 4.5 mm linearly with the F/M ratio applied. Molecular analysis of the sludge did not show the domination of any particular bacterial species during the granulation process. It is apparent that applying different F/M ratios in different granulation stages, e.g., a higher F/M in the early stage and a reduced F/M in the later stage, can be an effective start-up strategy to facilitate rapid granule formation and sustain small and healthy granules in bioreactors. © 2011 Elsevier Ltd. All rights reserved.postprin

    Granular activated carbon for aerobic sludge granulation in a bioreactor with a low-strength wastewater influent

    Get PDF
    Aerobic sludge granulation is rather difficult or impossible for the treatment of low-strength wastewater. In this study, a novel technique involving granular activated carbon (GAC) was developed for rapid aerobic granulation under a low organic loading condition. Laboratory experiments were conducted with two sequencing batch reactors (SBRs) running side by side. One reactor had fine GAC added to the sludge mixture, and the other had no GAC added. A low-strength organic wastewater with a chemical oxygen demand (COD) concentration of only 200 mg/L was used as the influent to the SBRs. The morphology, physical properties, and bacterial community structure of the sludge in the two reactors were characterized and compared throughout the experiments. The results showed that granules could not be formed in the SBR without added GAC. However, complete granulation was achieved in the SBR with GAC addition. Selective discharge of slow settling sludge was also essential to the granulation process. Adding GAC to the seed sludge mixture, together with the selective discharge of small and loose sludge flocs, facilitated the retention and growth of bacterial cells on GAC in attached-growth mode, leading to complete granulation. In addition, the use of GAC produced aerobic granules with strong cores to help maintain the long-term stability of mature granules. With granulation, the solid-liquid separation property of the sludge was greatly improved. Once granules were formed, the granules were quite stable and GAC addition was no longer needed. Therefore, adding GAC is a simple and effective strategy to initiate granule formation for complete sludge granulation in bioreactors treating low-strength organic wastewater. © 2011 Elsevier B.V. All rights reserved.postprin

    The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation

    Get PDF
    Quorum sensing (QS) through signal chemical molecules is known to be essential to bacterial adhesion and biofilm formation. In this study, the QS ability of aerobic granules-a special form of biofilms used for biological wastewater treatment-was investigated and compared with that of conventional activated sludge flocs. A novel sectional membrane bioreactor was used together with a flow-cell to evaluate the possible influence of signal chemicals produced by the source sludge on the growth mode of bacterial cells. The results demonstrate the apparent production of QS chemicals from granules and its impact on initial cell attachment and granule formation. When granules were used as the signal-producing biomass, the attached-growth mode was dominant for the free cells, and the biofilm formation rate in the flow-cell was about ten times faster than in cases which used activated sludge as the signal source biomass. In addition, the intracellular extract from mature granules significantly accelerated the sludge granulation process. It is argued that the production and expression of QS signal chemicals from granules and granule precursors might have induced the gene expression of bacteria in suspension for attached growth rather than suspended growth, leading to granule formation and its stable structure. © Springer-Verlag 2010.postprin

    Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules

    Get PDF
    The granulation of nitrifying sludge in a sequencing batch reactor (SBR) fed with NH4 +-N-laden inorganic wastewater was investigated. After 120-day operation spherical and elliptical granules with an average diameter of 0.32 mm were observed. The hydrophobicity surface, settling velocity and specific gravity of the matured granules increased with the processing of sludge granulation. Spatial distribution of bacterial species within the autotrophic granules was analyzed with fluorescence in situ hybridization. Both ammonia- and nitrite-oxidizing bacteria were observed in the granular sludge. The Michaelis-Menten equation was used to describe their NH4 +-N utilization rate, and the kinetic coefficients were calculated to be vm = 18.0 mg/g-VSS/h and Km = 36.7 mg/l. Taking into account the NH4 +-N utilization rate and removal efficiency together, an NH4 +-N concentration range of 100-250 mg/l was found to be favourable for the operation of the SBR to cultivate nitrifying granules. © 2009 Elsevier Ltd. All rights reserved.postprin

    Surfactant-Assisted in situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array

    Get PDF
    In this paper, a general low-cost and substrate-independent chemical etching strategy is demonstrated for the synthesis of ZnO nanotubes array. During the chemical etching, the nanotubes array inherits many features from the preformed nanorods array, such as the diameter, size distribution, and alignment. The preferential etching along c axis and the surfactant protection to the lateral surfaces are considered responsible for the formation of ZnO nanotubes. This surfactant-assisted chemical etching strategy is highly expected to advance the research in the ZnO nanotube-based technology

    Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements

    Get PDF
    Homogeneous and stable magnetic nanofluids containing γ-Fe2O3 nanoparticles were prepared using a two-step method, and their thermal transport properties were investigated. Thermal conductivities of the nanofluids were measured to be higher than that of base fluid, and the enhanced values increase with the volume fraction of the nanoparticles. Viscosity measurements showed that the nanofluids demonstrated Newtonian behavior and the viscosity of the nanofluids depended strongly on the tested temperatures and the nanoparticles loadings. Convective heat transfer coefficients tested in a laminar flow showed that the coefficients increased with the augment of Reynolds number and the volume fraction

    Discussion on the thermal conductivity enhancement of nanofluids

    Get PDF
    Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed

    GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes

    Get PDF
    We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies
    corecore