79 research outputs found

    Dynamic model of spherical perturbations in the Friedman universe. III. Automodel solutions

    Full text link
    A class of exact spherically symmetric perturbations of retarding automodel solutions linearized around Friedman background of Einstein equations for an ideal fluid with an arbitrary barotrope value is obtained and investigated.Comment: 12 pages, 4 figures, 8 reference

    Exact solution of the relativistic magnetohydrodynamic equations in the background of a plane gravitational wave with combined polarization

    Get PDF
    We obtain an exact solution of the self-consistent relativistic magnetohydrodynamic equations for an anisotropic magnetoactive plasma in the background of a plane gravitational wave metric (PGW) with an arbitrary polarization. It is shown that, in the linear approximation in the gravitational wave amplitude, only the e+\mathbf{e_+} polarization of the PGW interacts with a magnetoactive plasma.Comment: 5 pages, 8 reference

    Dynamic model of spherical perturbations in the Friedmann universe. II. retarding solutions for the ultrarelativistic equation of state

    Full text link
    Exact linear retarding spherically symmetric solutions of Einstein equations linearized around Friedmann background for the ultrarelativistic equation of state are obtained and investigated. Uniqueness of the solutions in the C1C^{1} class is proved.Comment: 12 pages, 4 figures, 5 reference

    Resonant interaction between gravitational waves, electromagnetic waves and plasma flows

    Full text link
    In magnetized plasmas gravitational and electromagnetic waves may interact coherently and exchange energy between themselves and with plasma flows. We derive the wave interaction equations for these processes in the case of waves propagating perpendicular or parallel to the plasma background magnetic field. In the latter case, the electromagnetic waves are taken to be circularly polarized waves of arbitrary amplitude. We allow for a background drift flow of the plasma components which increases the number of possible evolution scenarios. The interaction equations are solved analytically and the characteristic time scales for conversion between gravitational and electromagnetic waves are found. In particular, it is shown that in the presence of a drift flow there are explosive instabilities resulting in the generation of gravitational and electromagnetic waves. Conversely, we show that energetic waves can interact to accelerate particles and thereby \emph{produce} a drift flow. The relevance of these results for astrophysical and cosmological plasmas is discussed.Comment: 12 pages, 1 figure, typos corrected and numerical example adde

    Cosmological models with interacting components and mass-varying neutrinos

    Full text link
    A model for a homogeneous and isotropic spatially flat Universe, composed of baryons, radiation, neutrinos, dark matter and dark energy is analyzed. We infer that dark energy (considered to behave as a scalar field) interacts with dark matter (either by the Wetterich model, or by the Anderson and Carroll model) and with neutrinos by a model proposed by Brookfield et al.. The latter is understood to have a mass-varying behavior. We show that for a very-softly varying field, both interacting models for dark matter give the same results. The models reproduce the expected red-shift performances of the present behavior of the Universe.Comment: 8 pages, 5 figures, to be published in Gravitation and Cosmolog

    Nonlinear coupled Alfv\'{e}n and gravitational waves

    Full text link
    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field, and the coupling to compressional Alfv\'{e}n waves. The gravitational waves are considered in the high frequency limit and the plasma is modelled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schr\"{o}dinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected.Comment: 20 pages, revtex4, accepted in PR

    Photon frequency conversion induced by gravitational radiation

    Get PDF
    We consider propagation of gravitational radiation in a magnetized multicomponent plasma. It is shown that large density perturbations can be generated, even for small deviations from flat space, provided the cyclotron frequency is much larger than the plasma frequency. Furthermore, the induced density gradients can generate frequency conversion of electromagnetic radiation, which may give rise to indirect observational effect of the gravitational waves.Comment: 13 pages, 1 figure, uses revtex, Accepted for publication in Phys. Rev. D, Revised, appendix adde

    Cyclotron damping and Faraday rotation of gravitational waves

    Get PDF
    We study the propagation of gravitational waves in a collisionless plasma with an external magnetic field parallel to the direction of propagation. Due to resonant interaction with the plasma particles the gravitational wave experiences cyclotron damping or growth, the latter case being possible if the distribution function for any of the particle species deviates from thermodynamical equilibrium. Furthermore, we examine how the damping and dispersion depends on temperature and on the ratio between the cyclotron- and gravitational wave frequency. The presence of the magnetic field leads to different dispersion relations for different polarizations, which in turn imply Faraday rotation of gravitational waves.Comment: 15 pages, 3 figures. Accepted for publication in Phys. Rev.
    • …
    corecore