5,210 research outputs found

    Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    Get PDF
    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.

    Perfect Test of Entanglement for Two-level Systems

    Full text link
    A 3-setting Bell-type inequality enforced by the indeterminacy relation of complementary local observables is proposed as an experimental test of the 2-qubit entanglement. The proposed inequality has an advantage of being a sufficient and necessary criterion of the separability. Therefore any entangled 2-qubit state cannot escape the detection by this kind of tests. It turns out that the orientation of the local testing observables plays a crucial role in our perfect detection of the entanglement.Comment: 4 pages, RevTe

    Classifying N-qubit Entanglement via Bell's Inequalities

    Get PDF
    All the states of N qubits can be classified into N-1 entanglement classes from 2-entangled to N-entangled (fully entangled) states. Each class of entangled states is characterized by an entanglement index that depends on the partition of N. The larger the entanglement index of an state, the more entangled or the less separable is the state in the sense that a larger maximal violation of Bell's inequality is attainable for this class of state.Comment: 4 pages, 3 figure

    Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    Full text link
    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multi-photons (multi-photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 11, 2020 and 100100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devicesComment: Published version, including supplementary materia
    corecore