13,671 research outputs found

    Exact Pseudofermion Action for Monte Carlo Simulation of Domain-Wall Fermion

    Get PDF
    We present an exact pseudofermion action for hybrid Monte Carlo simulation (HMC) of one-flavor domain-wall fermion (DWF), with the effective 4-dimensional Dirac operator equal to the optimal rational approximation of the overlap-Dirac operator with kernel H=cHw(1+dΞ³5Hw)βˆ’1 H = c H_w (1 + d \gamma_5 H_w)^{-1} , where c c and d d are constants. Using this exact pseudofermion action, we perform HMC of one-flavor QCD, and compare its characteristics with the widely used rational hybrid Monte Carlo algorithm (RHMC). Moreover, to demonstrate the practicality of the exact one-flavor algorithm (EOFA), we perform the first dynamical simulation of the (1+1)-flavors QCD with DWF.Comment: 13 pages, 4 figures, v2: Simulation of (1+1)-flavors QCD with DWF, and references added. To appear in Phys. Lett.

    Testing Electroweak Baryogenesis with Future Colliders

    Get PDF
    Electroweak Baryogenesis (EWBG) is a compelling scenario for explaining the matter-antimatter asymmetry in the universe. Its connection to the electroweak phase transition makes it inherently testable. However, completely excluding this scenario can seem difficult in practice, due to the sheer number of proposed models. We investigate the possibility of postulating a "no-lose" theorem for testing EWBG in future e+e- or hadron colliders. As a first step we focus on a factorized picture of EWBG which separates the sources of a stronger phase transition from those that provide new sources of CP violation. We then construct a "nightmare scenario" that generates a strong first-order phase transition as required by EWBG, but is very difficult to test experimentally. We show that a 100 TeV hadron collider is both necessary and possibly sufficient for testing the parameter space of the nightmare scenario that is consistent with EWBG.Comment: 26 pages + references, 10 figures. Fixed minor typos, updated TLEP and 100 TeV projections. Conclusions unchange

    Anapole Dark Matter at the LHC

    Get PDF
    The anapole moment is the only allowed electromagnetic moment for Majorana fermions. Fermionic dark matter acquiring an anapole can have a standard thermal history and be consistent with current direct detection experiments. In this paper, we calculate the collider monojet signatures of anapole dark matter and show that the current LHC results exclude anapole dark matter with mass less than 100 GeV, for an anapole coupling that leads to the correct thermal relic abundance.Comment: 11 pages, 3 figures, v2: version to appear in PR
    • …
    corecore