88,389 research outputs found

    LUMIS Interactive graphics operating instructions and system specifications

    Get PDF
    The LUMIS program has designed an integrated geographic information system to assist program managers and planning groups in metropolitan regions. Described is the system designed to interactively interrogate a data base, display graphically a portion of the region enclosed in the data base, and perform cross tabulations of variables within each city block, block group, or census tract. The system is designed to interface with U. S. Census DIME file technology, but can accept alternative districting conventions. The system is described on three levels: (1) introduction to the systems's concept and potential applications; (2) the method of operating the system on an interactive terminal; and (3) a detailed system specification for computer facility personnel

    Strong-coupling effects in the relaxation dynamics of ultracold neutral plasmas

    Full text link
    We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells

    Counterintuitive transitions in the multistate Landau-Zener problem with linear level crossings

    Full text link
    We generalize the Brundobler-Elser hypothesis in the multistate Landau-Zener problem to the case when instead of a state with the highest slope of the diabatic energy level there is a band of states with an arbitrary number of parallel levels having the same slope. We argue that the probabilities of counterintuitive transitions among such states are exactly zero.Comment: 9 pages, 5 figure

    Random Scattering Matrices and the Circuit Theory of Andreev Conductances

    Full text link
    The conductance of a normal-metal mesoscopic system in proximity to superconducting electrode(s) is calculated. The normal-metal part may have a general geometry, and is described as a ``circuit'' with ``leads'' and ``junctions''. The junctions are each ascribed a scattering matrix which is averaged over the circular orthogonal ensemble, using recently-developed techniques. The results for the electrical conductance reproduce and extend Nazarov's circuit theory, thus bridging between the scattering and the bulk approaches. The method is also applied to the heat conductance.Comment: 12 pages, RevTeX, including 2 figures with eps

    Charge ordering and magneto-polarons in Na0.82_{0.82}CoO2_2

    Full text link
    Using spectral ellipsometry, we have measured the dielectric function of a Na0.82(2)_{0.82(2)}CoO2_2 crystal that exhibits bulk antiferromagnetism with TN_{N}=19.8 K. We identify two prominent transitions as a function of temperature. The first one at 280 K involves marked changes of the electronic and the lattice response that are indicative of charge ordering in the CoO2_{2} layers. The second transition coincides with TN_{N}=19.8 K and reveals a sizeable spin-charge coupling. The data are discussed in terms of charge ordering and formation of magneto-polarons due to a charge-induced spin-state transition of adjacent Co3+^{3+} ions

    Electrostatic Patch Effect in Cylindrical Geometry. I. Potential and Energy between Slightly Non-Coaxial Cylinders

    Full text link
    We study the effect of any uneven voltage distribution on two close cylindrical conductors with parallel axes that are slightly shifted in the radial and by any length in the axial direction. The investigation is especially motivated by certain precision measurements, such as the Satellite Test of the Equivalence Principle (STEP). By energy conservation, the force can be found as the energy gradient in the vector of the shift, which requires determining potential distribution and energy in the gap. The boundary value problem for the potential is solved, and energy is thus found to the second order in the small transverse shift, and to lowest order in the gap to cylinder radius ratio. The energy consists of three parts: the usual capacitor part due to the uniform potential difference, the one coming from the interaction between the voltage patches and the uniform voltage difference, and the energy of patch interaction, entirely independent of the uniform voltage. Patch effect forces and torques in the cylindrical configuration are derived and analyzed in the next two parts of this work.Comment: 26 pages, 1 Figure. Submitted to Classical and Quantum Gravit
    • …
    corecore