58 research outputs found
Using Recurrent Neural Networks To Forecasting of Forex
This paper reports empirical evidence that a neural networks model is
applicable to the statistically reliable prediction of foreign exchange rates.
Time series data and technical indicators such as moving average, are fed to
neural nets to capture the underlying "rules" of the movement in currency
exchange rates. The trained recurrent neural networks forecast the exchange
rates between American Dollar and four other major currencies, Japanese Yen,
Swiss Frank, British Pound and EURO. Various statistical estimates of forecast
quality have been carried out. Obtained results show, that neural networks are
able to give forecast with coefficient of multiple determination not worse then
0.65. Linear and nonlinear statistical data preprocessing, such as
Kolmogorov-Smirnov test and Hurst exponents for each currency were calculated
and analyzed.Comment: 23 pages, 13 figure
- …