23,841 research outputs found

    Spin-Orbit Coupling and Tunneling Current in a Parabolic Quantum Dot

    Full text link
    We propose a novel approach to explore the properties of a quantum dot in the presence of the spin-orbit interaction and in a tilted magnetic field. The spin-orbit coupling within the quantum dot manifest itself as anti-crossing of the energy levels when the tilt angle is varied. The anti-crossing gap has a non-monotonic dependence on the magnitude of the magnetic field and exhibits a peak at some finite values of the magnetic field. From the dependence of the tunneling current through the quantum dot on the bias voltage and the tilt angle, the anti-crossing gap and most importantly the spin-orbit strength can be uniquely determined

    Faithful qubit transmission against collective noise without ancillary qubits

    Full text link
    We present a faithful qubit transmission scheme with linear optics against collective noise, not resorting to ancillary qubits. Its set-up is composed of three unbalanced polarization interferometers, based on a polarizing beam splitter, a beam splitter and a half-wave plate, which makes this scheme more feasible than others with present technology. The fidelity of successful transmission is 1, independent of the parameters of the collective noise, and the success probability for obtaining an uncorrupted state can be improved to 100% with some time delayers. Moreover, this scheme has some good applications in one-way quantum communication for rejecting the errors caused by the collective noise in quantum channel.Comment: 3 pages, 1 figur

    Effect of electron interactions on the conductivity and exchange coupling energy of disordered metallic magnetic multilayer

    Full text link
    We consider the effect of electron-electron interactions on the current-in-plane (CIP) conductivity and exchange coupling energy of a disordered metallic magnetic multilayer. We analyze its dependence on the value of ferromagnetic splitting of conducting electrons and ferromagnetic layers relative magnetizations orientation. We show that contribution to the CIP conductivity and exchange coupling energy as a periodic function of the angle of magnetizations relative orientation experience 2ππ 2\pi \to \pi transition depending on the characteristic energies: ferromagnetic splitting of the conducting electrons and the Thouless energy of paramagnetic layer.Comment: 6 pages, 1 figur

    Ballistic spin field-effect transistors: Multichannel effects

    Full text link
    We study a ballistic spin field-effect transistor (SFET) with special attention to the issue of multi-channel effects. The conductance modulation of the SFET as a function of the Rashba spin-orbit coupling strength is numerically examined for the number of channels ranging from a few to close to 100. Even with the ideal spin injector and collector, the conductance modulation ratio, defined as the ratio between the maximum and minimum conductances, decays rapidly and approaches one with the increase of the channel number. It turns out that the decay is considerably faster when the Rashba spin-orbit coupling is larger. Effects of the electronic coherence are also examined in the multi-channel regime and it is found that the coherent Fabry-Perot-like interference in the multi-channel regime gives rise to a nested peak structure. For a nonideal spin injector/collector structure, which consists of a conventional metallic ferromagnet-thin insulator-2DEG heterostructure, the Rashba-coupling-induced conductance modulation is strongly affected by large resonance peaks that arise from the electron confinement effect of the insulators. Finally scattering effects are briefly addressed and it is found that in the weakly diffusive regime, the positions of the resonance peaks fluctuate, making the conductance modulation signal sample-dependent.Comment: 18 pages, 15 figure

    Spin-quadrupole ordering of spin-3/2 ultracold fermionic atoms in optical lattices in the one-band Hubbard model

    Full text link
    Based on a generalized one-band Hubbard model, we study magnetic properties of Mott insulating states for ultracold spin-3/2 fermionic atoms in optical lattices. When the \textit{s}-wave scattering lengths for the total spin S=2,0S=2,0 satisfy conditions a2>a0>0a_{2}>a_{0}>0, we apply a functional integral approach to the half filled case, where the spin-quadrupole fluctuations dominate. On a 2D square lattice, the saddle point solution yields a staggered spin-quadrupole ordering at zero temperature with symmetry breaking from SO(5) to SO(4). Both spin and spin-quadrupole static structure factors are calculated, displaying highly anisotropic spin antiferromagnetic fluctuations and antiferroquadrupole long-range correlations, respectively. When Gaussian fluctuations around the saddle point are taken into account, spin-quadrupole density waves with a linear dispersion are derived. Compared with the spin density waves in the half filled spin-1/2 Hubbard model, the quadrupole density wave velocity is saturated in the strong-coupling limit, and there are no transverse spin-quadrupole mode couplings, as required by the SO(4) invariance of the effective action. Finally, in the strong-coupling limit of the model Hamiltonian, we derive the effective hyperfine spin-exchange interactions for the Mott insulating phases in the quarter filled and half filled cases, respectively.Comment: 12 pages, 5 figure

    Enhance synchronizability via age-based coupling

    Full text link
    In this brief report, we study the synchronization of growing scale-free networks. An asymmetrical age-based coupling method is proposed with only one free parameter α\alpha. Although the coupling matrix is asymmetric, our coupling method could guarantee that all the eigenvalues are non-negative reals. The eigneratio R will approach to 1 in the large limit of α\alpha.Comment: 3 pages, 1 figur

    Efficient quantum key distribution over a collective noise channel

    Full text link
    We present two efficient quantum key distribution schemes over two different collective-noise channels. The accepted hypothesis of collective noise is that photons travel inside a time window small compared to the variation of noise. Noiseless subspaces are made up of two Bell states and the spatial degree of freedom is introduced to form two nonorthogonal bases. Although these protocols resort to entangled states for encoding the key bit, the receiver is only required to perform single-particle product measurements and there is no basis mismatch. Moreover, the detection is passive as the receiver does not switch his measurements between two conjugate measurement bases to get the key.Comment: 6 pages, 1 figure; the revised version of the paper published in Phys. Rev. A 78, 022321 (2008). Some negligible errors on the error rates of eavesdropping check are correcte

    Impurity resonance states in electron-doped high T_c superconductors

    Full text link
    Two scenarios, i.e., the anisotropic s-wave pairing (the s-wave scenario) and the d-wave pairing coexisting with antiferromagnetism (the coexisting scenario) have been introduced to understand some of seemingly s-wave like behaviors in electron doped cuprates. We considered the electronic structure in the presence of a nonmagnetic impurity in the coexistence scenario. We found that even if the AF order opens a full gap in quasi-particle excitation spectra, the mid-gap resonant peaks in local density of states (LDoS) around an impurity can still be observed in the presence of a d-wave pairing gap. The features of the impurity states in the coexisting phase are markedly different from the pure AF or pure d-wave pairing phases, showing the unique role of the coexisting AF and d-wave pairing orders. On the other hand, it is known that in the pure s-wave case no mid-gap states can be induced by a nonmagnetic impurity. Therefore we proposed that the response to a nonmagnetic impurity can be used to differentiate the two scenarios.Comment: 5 pages, two-column revtex4, 5 figures, author list correcte

    Highly Efficient Midinfrared On-Chip Electrical Generation of Graphene Plasmons by Inelastic Electron Tunneling Excitation

    Get PDF
    Inelastic electron tunneling provides a low-energy pathway for the excitation of surface plasmons and light emission. We theoretically investigate tunnel junctions based on metals and graphene. We show that graphene is potentially a highly efficient material for tunneling excitation of plasmons because of its narrow plasmon linewidths, strong emission, and large tunability in the midinfrared wavelength regime. Compared to gold and silver, the enhancement can be up to 10 times for similar wavelengths and up to 5 orders at their respective plasmon operating wavelengths. Tunneling excitation of graphene plasmons promises an efficient technology for on-chip electrical generation and manipulation of plasmons for graphene-based optoelectronics and nanophotonic integrated circuits.Comment: 12 pages, 7 figure

    Glueball spectrum and the Pomeron in the Wilson loop approach

    Get PDF
    Using a nonperturbative method based on asymptotic behaviour of Wilson loops we calculate masses of glueballs and corresponding Regge-trajectories. The only input is string tension fixed by meson Regge slope, while perturbative contributions to spin splittings are defined by standard alpha_s values. The masses of lowest glueball states are in a perfect agreement with lattice results. The leading glueball trajectory which is associated with Pomeron is discussed in details and its mixing with f and f' trajectories is taken into account.Comment: LaTeX2e, 49 pages, 2 figure
    corecore