30 research outputs found

    Design of Partially Etched GaP-OI Microresonators for Two-Color Kerr Soliton Generation at NIR and MIR

    Full text link
    We present and theoretically investigate a dispersion engineered GaP-OI microresonator containing a partially-etched gap of 250 nm x 410 nm in a 600 nm x 2990 nm waveguide. This gap enables a 3.25 {\mu}m wide anomalous dispersion spectral span covering both the near-infrared and the mid-infrared spectra. This anomalous dispersion is manifested by two mechanisms, being the hybridization of the fundamental TE modes around 1550 nm and the geometric dispersion of the higher order TE mode around the 3100 nm wavelengths, respectively. Two Kerr soliton combs can be numerically generated with 101 GHz and 97 GHz teeth spacings at these spectral windows. The proposed structure demonstrates the design flexibility thanks to the partially etched gap and paves the way towards potential coherent multicolor frequency comb generation in the emerging GaP-OI platform

    A novel defined risk signature of cuproptosis-related long non-coding RNA for predicting prognosis, immune infiltration, and immunotherapy response in lung adenocarcinoma

    Get PDF
    Background: Cuproptosis is a newly discovered non-apoptotic form of cell death that may be related to the development of tumors. Nonetheless, the potential role of cuproptosis-related lncRNAs in tumor immunity formation and patient-tailored treatment optimization of lung adenocarcinoma (LUAD) is still unclear.Methods: RNA sequencing and survival data of LUAD patients were downloaded from The Cancer Genome Atlas (TCGA) database for model training. The patients with LUAD in GSE29013, GSE30219, GSE31210, GSE37745, and GSE50081 were used for validation. The proofed cuproptosis-related genes were extracted from the previous studies. The Pearson correlation was applied to select cuproptosis-related lncRNAs. We chose differentially expressed cuproptosis-related lncRNAs in the tumor and normal tissues and allowed them to go to a Cox regression and a LASSO regression for a lncRNA signature that predicts the LUAD prognosis. Kaplan–Meier estimator, Cox model, ROC, tAUC, PCA, nomogram predictor, decision curve analysis, and real-time PCR were further deployed to confirm the model’s accuracy. We examined this model’s link to other regulated cell death forms. Applying TMB, immune-related signatures, and TIDE demonstrated the immunotherapeutic capabilities of signatures. We evaluated the relationship of our signature to anticancer drug sensitivity. GSEA, immune infiltration analysis, and function experiments further investigated the functional mechanisms of the signature and the role of immune cells in the prognostic power of the signature.Results: An eight-lncRNA signature (TSPOAP1-AS1, AC107464.3, AC006449.7, LINC00324, COLCA1, HAGLR, MIR4435-2HG, and NKILA) was built and demonstrated owning prognostic power by applied to the validation cohort. Each signature gene was confirmed differentially expressed in the real world by real-time PCR. The eight-lncRNA signature correlated with 2321/3681 (63.05%) apoptosis-related genes, 11/20 (55.00%) necroptosis-related genes, 34/50 (68.00%) pyroptosis-related genes, and 222/380 (58.42%) ferroptosis-related genes. Immunotherapy analysis suggested that our signature may have utility in predicting immunotherapy efficacy in patients with LUAD. Mast cells were identified as key players that support the predicting capacity of the eight-lncRNA signature through the immune infiltrating analysis.Conclusion: In this study, an eight-lncRNA signature linked to cuproptosis was identified, which may improve LUAD management strategies. This signature may possess the ability to predict the effect of LUAD immunotherapy. In addition, infiltrating mast cells may affect the signature’s prognostic power

    Effect of Sucrose Concentration on Sucrose-Dependent Adhesion and Glucosyltransferase Expression of S. mutans in Children with Severe Early-Childhood Caries (S-ECC)

    No full text
    Sucrose, extracellular polysaccharide, and glucosyltransferases (GTFs) are key factors in sucrose-dependent adhesion and play important roles in the process of severe early-childhood caries (S-ECC). However, whether sucrose concentration regulates gtf expression, extracellular polysaccharide synthesis, and sucrose-dependent adhesion is related to the different genotypes of S. mutans isolated from ECC in children and still needs to be investigated. In this study, 52 strains of S. mutans were isolated from children with S-ECC and caries-free (CF) children. Water-insoluble glucan (WIG) synthesis was detected by the anthrone method, adhesion capacity by the turbidimetric method, and expression of gtf by RT-PCR in an in vitro model containing 1%–20% sucrose. The genotypes of S. mutans were analyzed by AP-PCR. The results showed that WIG synthesis, adhesion capacity, and gtf expression increased significantly when the sucrose concentration was from 1% to 10%. WIG synthesis and gtfB as well as gtfC expression of the 1% and 5% groups were significantly lower than those of the 10% and 20% groups (p < 0.05). There were no significant differences between the 10% and 20% groups. The fingerprints of S. mutans detected from individuals in the S-ECC group exhibited a significant difference in diversity compared with those from CF individuals (p < 0.05). Further, the expression of gtfB and gtfC in the S-ECC group was significantly different among the 1- to 5-genotype groups (p < 0.05). It can be concluded that sucrose-dependent adhesion might be related to the diversity of genotypes of S. mutans, and the 10% sucrose level can be seen as a “turning point” and essential factor for the prevention of S-ECC

    Simulation and Optimization of Insulation Wall Corner Construction for Ultra-Low Energy Buildings

    No full text
    Approximately 40% of the overall energy consumption of society is consumed by buildings. Most building energy usage is due to poor envelope performance. In regions with cold winters, the corners of structures typically have the lowest interior surface temperature. In corners, condensation, frost, and mold are common. This has a substantial effect on building energy usage and residents’ comfort. In this study, the heat loss of corner envelopes is evaluated, and a suitable insulation construction of wall corners is constructed to increase the surface temperature of the envelope interior. Computational Fluid Dynamics simulation has been used to examine the heat transmission in a corner of an ultra-low energy building in this study. By comparing the indoor surface temperature to the soil temperature beneath the building, the insulation construction of wall corners has been tuned. The study results indicate that the planned insulation construction of wall corners can enhance the internal surface temperature in the corner and the soil temperature under the structure by approximately 8.5 °C, thereby decreasing the indoor–outdoor temperature differential and the heat transfer at ground level. In extremely cold places, the insulation horizontal extension belt installation can help prevent the earth beneath the building from freezing throughout the winter

    Warm Rolled Temperature Effect on Microstructure and Mechanical Properties of 18Mn/40Si2CrMo Multilayer Composite Steel

    No full text
    In order to obtain a good strength-plastic/toughness match relationship, 18Mn/40Si2CrMo multilayer composite steels were successfully fabricated by a vacuum hot rolling and warm rolling process in this paper. The effects of different warm rolling temperatures (400–600 °C) on the microstructure and mechanical properties of the multilayer composite steel were systematically investigated. The result shows that the warm rolling process reduces thickness of the interfacial diffusion layer, which improves the interfacial bonding strength of multilayer composite steel. With the increase of warm rolling temperature, the total elongation (TEL) increases but ultimate tensile strength (UTS) decreases. The multilayer composite steel with a warm temperature of 500 °C achieves the balance of strength and plastic of which the UTS and TEL are 1.7 GPa and 12.5%, respectively. This is due to the high work-hardening ability of deformation twins of the 18Mn layer and the precipitates nanoscale carbides of the 40Si2CrMo layer to obscure the dislocation movement

    Interface Strengthening and Toughening Mechanism of Hot Rolled Multilayer TWIP/40Si2CrMo Steels

    No full text
    Layered metal composites play an increasingly important role in aerospace, automotive, and nuclear energy. Compared with a single metal or alloy, the layered metal composite exhibits an excellent strong-plastic matching effect. In this paper, multilayer TWIP/40Si2CrMo steels with different hot rolling reductions were successfully fabricated by the vacuum hot rolling. The results show that the multilayer steels can improve the lower yield strength of TWIP steel and lower the fracture elongation of 40Si2CrMo steel. In addition, with the increase of the hot rolling reduction, the mechanical properties and interfacial bonding strength of multilayer steels were improved, while the size and number of interfacial oxides decrease, and the fracture mode was also changed. This shows that a higher hot rolling reduction will promote the breakage of the interface oxides and make them appear dispersed, thereby improving the bonding strength of the interface, effectively suppressing the delamination and local necking of the multilayer steel, and making the multilayer steel show a higher ability of uniform plastic deformation. At the same time, under the dual action of layer thickness scale and interface strengthening effect, the brittle layer of multilayer steel presents a multiple tunnel crack mode. It was beneficial to alleviate the stress concentration and further improve the strengthening and toughening effect of multilayer steel

    Seroprevalence rates in children aged 3-6 years after implementing a two-dose varicella vaccination: A observational study

    No full text
    The study evaluates the outcomes of including varicella vaccines (VarV) in the local expanded programme on immunization (EPI) on the seropositivity rates and corresponding protective effects for children aged 3–6 years in Suzhou. The study is observational. Varicella prevalence in children was assessed based on data from the China Information System for Disease Control and Prevention (CISDCP) and the Jiangsu Province Vaccination Integrated Service Management Information System (JPVISMIS). Seropositivity was determined using the enzyme-linked immunosorbent assay (ELISA). A total of 2,873 children aged 3–6 years were enrolled in this study. The seropositivity rates were 95.31% and 86.89% for children with and without the strategy, respectively. The difference in seropositivity rate in children using the different strategies was statistically significant (Trend χ2 = 0.397, P = .255). It is therefore suggested that Suzhou had a high rate of occult infection before the inclusion of varicella vaccine in the EPI. The difference in seroprevalence rate between children with no history of varicella vaccination and those with a history of varicella vaccination was statistically different (χ2 = 51.362, P < .001). The positive rates of antibodies increased with increasing doses of vaccination (χ2 = 56.252, P < .001). For the protective effect of one-dose and two-dose, it was found that the protection rates of one-dose were 72.98% and 100.00%, respectively. The varicella vaccine is an effective method to prevent varicella disease, which can increase serum seroprevalence levels and block the transmission of varicella disease

    Regulatory Mechanism of Peroxisome Number Reduction Caused by <i>FgPex4</i> and <i>FgPex22-like</i> Deletion in <i>Fusarium graminearum</i>

    No full text
    Peroxisomes are single-membrane-bound organelles that play critical roles in eukaryotic cellular functions. Peroxisome quantity is a key factor influencing the homeostasis and pathogenic processes of pathogenic fungi. The aim of the present study was to investigate the underlying mechanisms of the reduction in number of peroxisomes in Fusarium graminearum consequent to FgPex4 and FgPex22-like deletion. The number of peroxisomes decreased by 40.55% and 39.70% when FgPex4 and FgPex22-like, respectively, were absent. Peroxisome biogenesis-related proteins, as well as inheritance- and division-related dynamin-like proteins were reduced at the transcriptional level in the mutant strains. In addition, the degree of pexophagy was intensified and the accumulation of ubiquitinated FgPex5 was also increased in F. graminearum when FgPex4 or FgPex22-like was absent. The findings suggest that FgPex4 and FgPex22-like influence the number of peroxisomes by influencing peroxisome biogenesis and pexophagy
    corecore