8 research outputs found

    The number of independent sets of tricyclic graphs

    Get PDF
    AbstractLet Tn be the class of tricyclic graphs G on n vertices. In this work, the graphs in Tn with the smallest number of independent sets are characterized

    Open multistate Majorana model

    Get PDF
    The multistate Majorana model in the presence of dissipation and dephasing is considered. It is proven that increasing the Hilbert space dimension the system becomes more and more fragile to quantum noise. The impossibility to recast the problem in the form of a set of independent spin-1/21/2 problems because of the presence of the noise is pointed out

    Materials Design, Sensing Performance and Mechanism of Anhydrous Hydrogen Fluoride Gas Sensor Based on Amino-Functionalized MIL-101(Cr) for New Energy Vehicles

    No full text
    To guarantee the security of new energy vehicles (NEV), which include energy storage devices such as batteries, a quartz crystal microbalance (QCM) sensor was designed to detect online the HF gas produced from the leakage of electrolyte in the power system. Based on the chemical properties of HF gas, an amino-functionalized metal–organic framework NH2-MIL-101 (Cr) was synthesized as a sensing material of a QCM transducer to detect HF gas for NEV safeguard. The sensing materials are designed based on the hydrogen bond interaction between the amino group and HF molecular and were characterized by powder X-ray diffraction, Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), etc. The performance of this sensor showed high sensitivity, with a limit of detection at 500 ppb, short response/recovery time and good reproducibility for anhydrous hydrogen fluoride (AHF) detection. Additionally, the sensing mechanism of NH2-MIL-101(Cr) QCM resonator to AHF is revealed to be reversible chemical adsorption by Gaussian 09. It is well-matched with a result of experimental determination through temperature-varying microgravimetric experiments. Therefore, the amino-functionalized MIL-101(Cr) QCM resonator may be a good candidate for an NEV safety monitor due to its rapid response to HF leaked from the decomposition of the electrolyte

    Circular RNA 0102049 suppresses the progression of osteosarcoma through modulating miR-520g-3p/PLK2 axis

    No full text
    Circular RNAs (circRNAs) are a type of non-coding RNAs generated from back splicing to enhance or inhibit the progression of multiple human cancers including osteosarcoma (OS). Although circ_0102049 has been found to be highly expressed in OS cell lines, the role and specific mechanism of circ_0102049 in OS remains unclear. Here, we found that silence of circ_0102049 could significantly exacerbate the tumorigenesis of OS in vivo through sponging microRNA-520g-3p. Polo-like kinase 2 (PLK2) was predicted to be a target of miR-520g-3p, and luciferase reporter assay revealed that overexpression of miR-520g-3p dramatically suppressed the expression of PLK2, whereas miR-520g-3p inhibitor promoted the PLK2 expression. Moreover, the silence of circ_0102049 could markedly promote the proliferation, invasion, migration and cell-cycle promotion while inhibiting the apoptosis of OS cell line MG63 cells in vitro through regulating miR-520g-3p/PLK2 axis. Taken together, the present study indicated that circ_0102049 suppressed the progression of osteosarcoma via modulating miR-520g-3p/PLK2/TAp73 axis, providing a potential therapeutic target for OS

    Sequential Delivery of BMP2-Derived Peptide P24 by Thiolated Chitosan/Calcium Carbonate Composite Microspheres Scaffolds for Bone Regeneration

    No full text
    The combination of tissue-engineered bone scaffolds with osteogenic induction molecules is an important strategy for critical-sized bone defects repair. We synthesized a novel thiolated chitosan/calcium carbonate composite microsphere (TCS-P24/CA) scaffold as a carrier for bone morphogenetic protein 2- (BMP2-) derived peptide P24 and evaluated the release kinetics of P24. The effect of TCS-P24/CA scaffolds on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) was evaluated by scanning electron microscope (SEM), CCK-8, ALP assay, alizarin red staining, and PCR. A 5 mm diameter calvarial defect was created, then new bone formation was evaluated by Micro-CT and histological examination at 4 and 8 weeks after operation. We found the sequential release of P24 could last for 29 days. Meanwhile, BMSCs revealed spindle-shaped surface morphology, indicating the TCS-P24/CA scaffolds could support cell adhesion and mRNA levels for ALP, Runx2, and COL1a1 were significantly upregulated on TCS-10%P24/CA scaffold compared with other groups in vitro (p<0.05). Similarly, the BMSCs exhibited a higher ALP activity as well as calcium deposition level on TCS-10%P24/CA scaffolds compared with other groups (p<0.05). Analysis of in vivo bone formation showed that the TCS-10%P24/CA scaffold induced more bone formation than TCS-5%P24/CA, TCS/CA, and control groups. This study demonstrates that the novel TCS-P24/CA scaffolds might contribute to the delivery of BMP2-derived Peptide P24 and is considered to be a potential candidate for repairing bone defects
    corecore