187 research outputs found

    Astrocyte molecular signatures in Huntington's disease

    Get PDF

    Investigation of Humidity and Temperature Response of a Silica Gel Coated Microfiber Coupler

    Get PDF
    The humidity and temperature responses of a microfiber coupler (MFC) coated with silica gel are investigated. Two MFC structures with different waist diameters of 2.5 and 3.5 μm were fabricated by fusing and tapering two single-mode fibers using a microheater brushing technique. The influences of the coating thickness and tapered waist diameter on the sensing performance are analyzed. For the proposed sensor with a waist diameter of 2.5 μm and 8-layers thick coating, the change in the relative humidity (RH) results in an exponential blueshift with a maximum sensitivity of 1.6 nm/% RH in the range from 70 to 86% RH. In response to the temperature change, the sensor's transmission spectrum redshifts in a linear fashion with an average sensitivity of 0.55 nm/°C in the range from 20 to 40 °C. The study is important for the development of the proposed fiber structure as a humidity or temperature sensor

    Efficient spectral compression of wavelength-shifting soliton and its application in integratable all-optical quantization

    Get PDF
    In this paper, we numerically demonstrate efficient spectral compression (SPC) of wavelength-shifting soliton in a chalcogenide strip waveguide. It is found that the profiles of group-velocity dispersion (GVD) and Kerr nonlinearity play key roles in determining SPC. After calculating the dispersion of Kerr nonlinearity and Raman spectrum for three kinds of chalcogenide materials, Ge11.5As24Se64.5 is chosen as the material for designing the chalcogenide strip waveguide (CSW). The geometric parameters of CSW are optimized to obtain the desired GVD and Kerr nonlinearity. Simulation results show that in the designed CSW, an input spectrum width of 52.04 nm can be compressed to 7.23 nm along with wavelength shift of 17 nm when the input peak power is 25 W. With the input peak power increasing to 75 W, the SPC is slightly weakened, but wavelength shift can be up to 190 nm. The proposed CSW is applied to integrated all-optical quantization and an effective quantization number of 3.66-bit is achieved. It is expected that our research results can find important applications in on-chip integrated spectroscopy, all-optical signal processing, etc

    High sensitivity ammonia gas sensor based on a silica gel coated microfiber coupler

    Get PDF
    In this paper, a high sensitivity ammonia gas sensor is proposed based on a silica gel coated microfiber coupler (MFC). The MFC structure is formed by the two tapered fibers with 3 μm waist diameter each, which were fabricated by using a customized microheater brushing technique. Silica gel coating was prepared by a sol-gel technique and applied on the surface of the MFC as a thin layer. The spectral characteristics of the proposed sensor were studied under various ammonia gas concentrations. The experimental results show that the coating thickness strongly affected the sensitivity of the MFC-based sensor to ammonia gas concentration. For the sensor with a 90 nm silica gel coating thickness, the highest measurement sensitivity is 2.23 nm/ppm for ammonia gas concentration, and the resolution is as good as 5 ppb, while the measured response and recovery times are ~ 50 and 35 seconds, respectively. Finally, it is demonstrated that the proposed sensor offers good repeatability and selectivity to ammonia gas

    Mid-infrared Self-Similar Pulse Compression in a Tapered Tellurite Photonic Crystal Fiber and Its Application in Supercontinuum Generation

    Get PDF
    In this paper, we design a tapered tellurite photonic crystal fiber (TTPCF) with nonlinear coefficient increasing along the propagation direction, and demonstrate the mid-infrared self-similar pulse compression of the fundamental soliton in such a TTPCF. When the variation of group-velocity dispersion, higher-order dispersion, higher-order nonlinearity, and linear loss are considered, a 1 ps pulse at wavelength 2.5 μm can be compressed to 62.16 fs after a 1.63-m long propagation, along with the negligible pedestal, compression factor Fc of 16.09, and quality factor Qc of 83.16%. Then the compressed pulse is launched into another uniform tellurite PCF designed, and highly coherent and octave-spanning supercontinuum (SC) is generated. Compared to the initial picosecond pulse, the compressed pulse has much larger tolerance of noise level for the SC generation. Our research results provide a promising solution to realize the fiber-based mid-infrared femtosecond pulse source for nonlinear photonics and spectroscopy

    Mid-Infrared Self-Similar Pulse Compression in a Tapered Tellurite Photonic Crystal Fiber and Its Application in Supercontinuum Generation

    Get PDF
    In this paper, we design a tapered tellurite photonic crystal fiber (TTPCF) with nonlinear coefficient increasing along the propagation direction, and demonstrate the mid-infrared self-similar pulse compression of the fundamental soliton in such a TTPCF. When the variation of group-velocity dispersion, higher-order dispersion, higher-order nonlinearity, and linear loss are considered, a 1 ps pulse at wavelength 2.5 μm can be compressed to 62.16 fs after a 1.63-m long propagation, along with the negligible pedestal, compression factor Fc of 16.09, and quality factor Qc of 83.16%. Then the compressed pulse is launched into another uniform tellurite PCF, where highly coherent and octave-spanning supercontinuum (SC) is generated. Compared to the initial picosecond pulse, the compressed pulse has much larger tolerance of noise level for the SC generation. Our research results provide a promising solution to realize the fiber-based mid-infrared femtosecond pulse source for nonlinear photonics and spectroscopy

    Demonstration of intermodal four-wave mixing by femtosecond pulses centered at 1550 nm in an air-silica photonic crystal fiber

    Get PDF
    In this paper, we demonstrated experimentally the intermodal four-wave mixing effect by launching femtosecond pulses centered at 1550 nm into deeply normal dispersion region in the fundamental guided-mode of an air-silica photonic crystal fiber with two zero dispersion wavelengths. When intermodal phase-matching condition is satisfied, the energy of the pump waves at 1550 nm in the fundamental guided-mode is converted to the anti-Stokes waves around 1258 nm and Stokes waves around 2018 nm both in the second-order guided-mode. When femtosecond pulses at input average power Pav of 90 mW are propagated inside 22 cm long photonic crystal fiber, the conversion efficiencies ηas and ηs of the anti-Stokes and Stokes waves generated are 8.5 and 6.8%, respectively. We also observed that the influences of the fiber bending and walk-off effect between the fundamental and second-order guided-modes on intermodal four-wave mixing-based frequency conversion process are very small

    Self-similar Pcosecond Pulse Compression for Supercontinuum Generation at Mid-infrared Wavelength in Silicon Strip Waveguides

    Get PDF
    Self-similar pulse compression has important application in highly coherent supercontinuum (SC) generation. In this paper, we numerically present the mid-infrared self-similar picosecond pulse compression in a tapered suspended silicon strip waveguide, which is designed with exponentially decreasing dispersion profile along the direction of propagation. When the variation of the Kerr nonlinear coefficient ��(z), linear and nonlinear losses, higher-order nonlinearity, and higher-order dispersion are taken into consideration, the simulation result shows that a 1 ps input pulse centered at wavelength 2.8 μm could be self-similarly compressed to 47.06 fs in a 3.9-cm waveguide taper, along with a compression factor ��c of 21.25, quality factor ��c of 0.78, and negligible pedestal. After that, the compressed pulse is launched into a uniform silicon strip waveguide, which is used for the generation of SC. We numerically demonstrate that the coherence of the generated SC by the compressed pulse can be significantly improved when compared to that generated directly by the picosecond pulse. The simulation results can be used to realize on-chip mid-infrared femtosecond light source and highly coherent supercontinuum, which can promote the development of on-chip nonlinear optic

    Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability

    Get PDF
    In this paper, we propose a microdisk resonator with negative thermal optical coefficient (TOC) polymer for refractive index (RI) sensing with thermal stability. The transmission characteristics and sensing performances by using quasi-TE01 and quasi-TM01 modes are simulated by a three-dimensional finite element method. The influences of the TOC, RI, and thickness of the polymer on the sensing performances are also investigated. The simulation results show that the RI sensitivity Sn and temperature sensitivity ST with different polymers are in the ranges of 25.1-26 nm/RIU and 67.3-75.2 pm/K for the quasi-TE01 mode, and 94.5-110.6 nm/RIU and 1.2-51.3 pm/K for the quasi-TM01 mode, respectively. Moreover, figure-of-merit of the temperature sensing for the quasi-TM01 mode is in the range of 2 × 10-4-8 × 10-3, which can find important application in the implementation of the adiabatic devices
    corecore