125 research outputs found

    Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through Image-IDS Aligning

    Full text link
    Scene text recognition has been studied for decades due to its broad applications. However, despite Chinese characters possessing different characteristics from Latin characters, such as complex inner structures and large categories, few methods have been proposed for Chinese Text Recognition (CTR). Particularly, the characteristic of large categories poses challenges in dealing with zero-shot and few-shot Chinese characters. In this paper, inspired by the way humans recognize Chinese texts, we propose a two-stage framework for CTR. Firstly, we pre-train a CLIP-like model through aligning printed character images and Ideographic Description Sequences (IDS). This pre-training stage simulates humans recognizing Chinese characters and obtains the canonical representation of each character. Subsequently, the learned representations are employed to supervise the CTR model, such that traditional single-character recognition can be improved to text-line recognition through image-IDS matching. To evaluate the effectiveness of the proposed method, we conduct extensive experiments on both Chinese character recognition (CCR) and CTR. The experimental results demonstrate that the proposed method performs best in CCR and outperforms previous methods in most scenarios of the CTR benchmark. It is worth noting that the proposed method can recognize zero-shot Chinese characters in text images without fine-tuning, whereas previous methods require fine-tuning when new classes appear. The code is available at https://github.com/FudanVI/FudanOCR/tree/main/image-ids-CTR.Comment: ICCV 202

    Orientation-Independent Chinese Text Recognition in Scene Images

    Full text link
    Scene text recognition (STR) has attracted much attention due to its broad applications. The previous works pay more attention to dealing with the recognition of Latin text images with complex backgrounds by introducing language models or other auxiliary networks. Different from Latin texts, many vertical Chinese texts exist in natural scenes, which brings difficulties to current state-of-the-art STR methods. In this paper, we take the first attempt to extract orientation-independent visual features by disentangling content and orientation information of text images, thus recognizing both horizontal and vertical texts robustly in natural scenes. Specifically, we introduce a Character Image Reconstruction Network (CIRN) to recover corresponding printed character images with disentangled content and orientation information. We conduct experiments on a scene dataset for benchmarking Chinese text recognition, and the results demonstrate that the proposed method can indeed improve performance through disentangling content and orientation information. To further validate the effectiveness of our method, we additionally collect a Vertical Chinese Text Recognition (VCTR) dataset. The experimental results show that the proposed method achieves 45.63% improvement on VCTR when introducing CIRN to the baseline model.Comment: IJCAI 202
    • …
    corecore