224 research outputs found
Tunable Rapid Electron Transport in Titanium Oxide Thin Films
Rapid electron transport in the quantum well triggers many novel physical
phenomena and becomes a critical point for the high-speed electronics. Here, we
found electrical properties of the titanium oxide changed from semiconducting
to metallic as the degree of oxidation decreased and Schottky quantum well was
formed at the interface. We take the asymmetry interface electron scattering
effect into consideration when studying the electrical transport properties of
the multilayer thin films. A novel physical conductivity model for the
multilayer thin films was developed. We found electron would be transferred
from the low-mobility semiconducting and metallic conductive channels to the
high-mobility Schottky quantum well conductive channel with an in-plane applied
electric field. Electron concentration and mobility of the forming 2DEG in the
Schottky quantum well could be tuned thus the nano-devices exhibited non-linear
voltage-current curves. The differential resistivity of the nano-devices could
decrease by two orders with increasing electric field at room temperature. Weak
electron localization of electrons has been experimentally observed in our
nano-devices at low temperature, which further demonstrated the existence of
2DEG in the Schottky quantum well. Our work will provide us new physics about
the rapid electron transport in the multilayer thin films, and bring novel
functional devices for the modern microelectronic industry
Tailoring energy barriers of Bloch-point-mediated transitions between topological spin textures
Magnetic skyrmions are nanoscale spin textures that their thermal stability
originates from the nontrivial topology in nature. Recently, a plethora of
topological spin textures have been theoretically predicted or experimentally
observed, enriching the diversity of the skyrmionic family. In this work, we
theoretically demonstrate the stabilities of various topological spin textures
against homochiral states in chiral magnets, including chiral bobbers, dipole
strings, and skyrmion tubes. They can be effectively classified by the
associated topological Hall signals. Multiple transition paths are found among
these textures, mediated by Bloch-point singularities, and the topological
protection property here can be manifested by a finite energy barrier with the
saddle point corresponding to the Bloch-point creation/destruction. By
carefully modulating the local property of a surface, such as interfacial DMI
induced by breaking the structural symmetry, the energy landscape of a magnetic
system can be tailored decisively. Significantly, the proposed scenario also
enables the manipulation of stabilities and transition barriers of these
textures, even accompanied by the discovery of ground-state chiral bobbers.
This study may raise great expectations on the coexistence of topological spin
textures as spintronics-based information carriers for future applications
Luttinger Liquid phase in the Aubry-Andr\'e Hubbard chain
We study the interplay between an on-site Hubbard repulsion and quasiperiodic
potential in one-dimensional fermion chains using the density matrix
renormalization group. We find that, at half-filling, the quasiperiodic
potential can destroy the Mott gap, leading to a metallic Luttinger liquid
phase between the gapped Mott insulator at strong repulsion and localized
gapless Aubry- Andr\'e insulator at strong quasiperiodic potential. Away from
half-filing, the metallic phase of the interacting model persists to larger
critical strengths of the potential than in the non-interacting case,
suggesting interaction-stabilized delocalization at finite doping. We
characterize the Luttinger liquid through its charge and spin correlations,
structure factors, and entanglement entropy
2D excitation information by MPS method on infinite helixes
Understanding the excitation spectrum in two-dimensional quantum many-body
systems has long been a challenging task. We present an approach by introducing
an excitation ansatz based on an infinite matrix product state (MPS) on a helix
structure. With the canonical form of MPS states, we can accurately extract key
properties such as energy, degeneracy, spectrum weight, and scaling behavior of
low-energy excited states simultaneously. To validate the effectiveness of this
method, we begin by applying it to the critical point of the transverse-field
Ising model. The extracted scaling exponent of the energy gap closely aligns
with the conformal bootstrap results. Subsequently, we apply this approach to
the - Heisenberg model on a square lattice. We discover that the
degeneracy of lowest-energy excitations serves as a reliable metric for
distinguishing different phases. The phase boundary identified by our method is
consistent with some of the previous findings. The present method provides a
promising avenue for studying the excitation spectrum of two-dimensional
quantum many-body systems
An analysis on the sensibility of casing vibration signal and its application to aero-hydraulic pump
Aero-hydraulic pump is a central part of hydraulic system in an aircraft. Acceleration sensors are installed in the axis, tangential and vertical direction for identifying the weak imbalance fault, and meanwhile analysis is made for the sensibility of weak imbalance fault from different direction acceleration signal. The result shows that the signal from vertical acceleration sensor is the most sensitive and the one from axis acceleration sensor is the least sensitive to identify and diagnose weak imbalance fault of aero-hydraulic pump
Hardness of Graph-Structured Algebraic and Symbolic Problems
In this paper, we study the hardness of solving graph-structured linear
systems with coefficients over a finite field and over a
polynomial ring .
We reduce solving general linear systems in to solving
unit-weight low-degree graph Laplacians over with a
polylogarithmic overhead on the number of non-zeros. Given the hardness of
solving general linear systems in [Casacuberta-Kyng 2022], this
result shows that it is unlikely that we can generalize Laplacian solvers over
, or finite-element based methods over in general, to
a finite-field setting. We also reduce solving general linear systems over
to solving linear systems whose coefficient matrices are walk
matrices (matrices with all ones on the diagonal) and normalized Laplacians
(Laplacians that are also walk matrices) over .
We often need to apply linear system solvers to random linear systems, in
which case the worst case analysis above might be less relevant. For example,
we often need to substitute variables in a symbolic matrix with random values.
Here, a symbolic matrix is simply a matrix whose entries are in a polynomial
ring . We formally define the reducibility
between symbolic matrix classes, which are classified in terms of the degrees
of the entries and the number of occurrences of the variables. We show that the
determinant identity testing problem for symbolic matrices with polynomial
degree and variable multiplicity at most is at least as hard as the
same problem for general matrices over .Comment: 57 pages, submitted version to STOC2
Anomalous shift in Andreev reflection from side incidence
Andreev reflection at a normal-superconductor interface may be accompanied
with an anomalous spatial shift. The studies so far are limited to the top
incidence configuration. Here, we investigate this effect in the side incidence
configuration, with the interface parallel to the principal axis of
superconductor. We find that the shift exhibits rich behaviors reflecting the
character of pair potential. It has two contributions: one from the
-dependent phase of pair potential, and the other from the evanescent mode.
For chiral -wave pairing, the pairing phase contribution is proportional to
the chirality of pairing and is independent of excitation energy, whereas the
evanescent mode contribution is independent of chirality and is nonzero only
for excitation energy below the gap. The two contributions also have opposite
parity with respect to the incident angle. For -wave pairing,
only the evanescent mode contribution exists, and the shift exhibits suppressed
zones in incident angles, manifesting the superconducting nodes. The dependence
of the shift on other factors, such as the angle of incident plane and Fermi
surface anisotropy, are discussed
- …