8,582 research outputs found

    On Graph Stream Clustering with Side Information

    Full text link
    Graph clustering becomes an important problem due to emerging applications involving the web, social networks and bio-informatics. Recently, many such applications generate data in the form of streams. Clustering massive, dynamic graph streams is significantly challenging because of the complex structures of graphs and computational difficulties of continuous data. Meanwhile, a large volume of side information is associated with graphs, which can be of various types. The examples include the properties of users in social network activities, the meta attributes associated with web click graph streams and the location information in mobile communication networks. Such attributes contain extremely useful information and has the potential to improve the clustering process, but are neglected by most recent graph stream mining techniques. In this paper, we define a unified distance measure on both link structures and side attributes for clustering. In addition, we propose a novel optimization framework DMO, which can dynamically optimize the distance metric and make it adapt to the newly received stream data. We further introduce a carefully designed statistics SGS(C) which consume constant storage spaces with the progression of streams. We demonstrate that the statistics maintained are sufficient for the clustering process as well as the distance optimization and can be scalable to massive graphs with side attributes. We will present experiment results to show the advantages of the approach in graph stream clustering with both links and side information over the baselines.Comment: Full version of SIAM SDM 2013 pape

    Predicting Social Links for New Users across Aligned Heterogeneous Social Networks

    Full text link
    Online social networks have gained great success in recent years and many of them involve multiple kinds of nodes and complex relationships. Among these relationships, social links among users are of great importance. Many existing link prediction methods focus on predicting social links that will appear in the future among all users based upon a snapshot of the social network. In real-world social networks, many new users are joining in the service every day. Predicting links for new users are more important. Different from conventional link prediction problems, link prediction for new users are more challenging due to the following reasons: (1) differences in information distributions between new users and the existing active users (i.e., old users); (2) lack of information from the new users in the network. We propose a link prediction method called SCAN-PS (Supervised Cross Aligned Networks link prediction with Personalized Sampling), to solve the link prediction problem for new users with information transferred from both the existing active users in the target network and other source networks through aligned accounts. We proposed a within-target-network personalized sampling method to process the existing active users' information in order to accommodate the differences in information distributions before the intra-network knowledge transfer. SCAN-PS can also exploit information in other source networks, where the user accounts are aligned with the target network. In this way, SCAN-PS could solve the cold start problem when information of these new users is total absent in the target network.Comment: 11 pages, 10 figures, 4 table

    Multi-Task Pharmacovigilance Mining from Social Media Posts

    Full text link
    Social media has grown to be a crucial information source for pharmacovigilance studies where an increasing number of people post adverse reactions to medical drugs that are previously unreported. Aiming to effectively monitor various aspects of Adverse Drug Reactions (ADRs) from diversely expressed social medical posts, we propose a multi-task neural network framework that learns several tasks associated with ADR monitoring with different levels of supervisions collectively. Besides being able to correctly classify ADR posts and accurately extract ADR mentions from online posts, the proposed framework is also able to further understand reasons for which the drug is being taken, known as 'indication', from the given social media post. A coverage-based attention mechanism is adopted in our framework to help the model properly identify 'phrasal' ADRs and Indications that are attentive to multiple words in a post. Our framework is applicable in situations where limited parallel data for different pharmacovigilance tasks are available.We evaluate the proposed framework on real-world Twitter datasets, where the proposed model outperforms the state-of-the-art alternatives of each individual task consistently.Comment: Accepted in the research track of The Web Conference(WWW) 201

    When and Where: Predicting Human Movements Based on Social Spatial-Temporal Events

    Full text link
    Predicting both the time and the location of human movements is valuable but challenging for a variety of applications. To address this problem, we propose an approach considering both the periodicity and the sociality of human movements. We first define a new concept, Social Spatial-Temporal Event (SSTE), to represent social interactions among people. For the time prediction, we characterise the temporal dynamics of SSTEs with an ARMA (AutoRegressive Moving Average) model. To dynamically capture the SSTE kinetics, we propose a Kalman Filter based learning algorithm to learn and incrementally update the ARMA model as a new observation becomes available. For the location prediction, we propose a ranking model where the periodicity and the sociality of human movements are simultaneously taken into consideration for improving the prediction accuracy. Extensive experiments conducted on real data sets validate our proposed approach
    corecore