27 research outputs found

    Importance of low-abundance microbial species in response to disturbances in wastewater bioreactors

    No full text
    This study demonstrates the importance of low-abundance species in maintaining biosystem stability in response to a changing reactor operation condition. Initiation and termination of effluent recirculation were applied as the operational disturbance factors in two upflow anaerobic sludge blanket (UASB) reactors treating high-strength wastewater, respectively. The microbial growth rates during the community evolution were calculated based on the non-steady-state mass balance model. Community evolution studies showed that directly following the initiation/termination of effluent recirculation, the microbial communities reached the highest diversity. The net growth rates of individual microbes during community evolution illustrated that low-abundance species played a critical role in response to the disturbance induced by initiating or discontinuing effluent recirculation. This study highlights the importance of the response of low-abundance species in maintaining biosystem stability when a disturbance is applied to a wastewater bioreactor.</p

    Anaerobic digestion of thickened waste activated sludge under calcium hypochlorite stress: Performance stability and microbial communities

    No full text
    Hypochlorite pretreatment has been proven effective in enhancing waste activated sludge (WAS) anaerobic digestion performances recently. In this study, two semi-continuous anaerobic sequencing batch reactors (ASBRs), one fed with Ca(ClO)2 pretreated thickened WAS (TWAS) and one with raw TWAS, were operated at mesophilic conditions (35 °C) for 145 days. Three loading shocks were introduced to each reactor to compare the performance stability and resilience between the digestion of Ca(ClO)2 pretreated TWAS and untreated TWAS. Microbial community shifts were quantified to reveal the microbiome responses to disturbances. The results suggested that 1% Ca(ClO)2 enhanced the digestion of TWAS by inactivating and transforming the biomass to more easily digested substrates. Co-occurrence network analysis revealed that the strongest interactions in the microbial community occurred in the steady state of TWAS anaerobic digestion.</p

    Spatial distributions of granular activated carbon in up-flow anaerobic sludge blanket reactors influence methane production treating low and high solid-content wastewater

    No full text
    The impacts of granular activated carbon (GAC) spatial distributions in up-flow anaerobic sludge blanket (UASB) reactors treating different solid-content wastewater were evaluated in the present study. When treating high solid-content wastewater, the highest methane yield was observed for UASB supplemented with self-floating GAC (74.2 ± 3.7 %), which was followed by settled + self-floating GAC reactor (65.1 ± 3.8 %), then settled GAC reactor (58.3 ± 1.4 %). When treating low solid-content wastewater, all UASBs achieved improved methane yield, and settled + self-floating GAC reactor achieved the highest methane yield (83.4 ± 3.3 %). Self-floating GAC amended reactor showed the best performance for treating high solid-content wastewater, while settled + self-floating GAC amended reactor was optimal for treating medium and low solid-content wastewater. The spatial distributions of microbial communities differed in the reactors with settled GAC and floating GAC. This study underlines the importance of considering feedwater characteristics when adopting GAC-based UASB processes.</p

    Shaping biofilm microbiomes by changing GAC location during wastewater anaerobic digestion

    No full text
    The addition of granular activated carbon (GAC) to up-flow anaerobic sludge blanket (UASB) reactors treating synthetic wastewater enhanced methane production by stimulating direct interspecies electron transfer (DIET). A modified UASB reactor with GAC packed in plastic carriers that allowed the GAC to float in the upper reactor zone achieved enhanced performance compared to a UASB reactor with GAC settled at the bottom of the reactor. Microbial communities in the biofilms developed on settled or floated GAC were compared. Methanosarcina (56.3-73.3%) dominated the floated-GAC biofilm whereas Methanobacterium (84.9-85.1%) was greatly enriched in the settled-GAC biofilm. Methanospirillum and Methanocorpusculum were enriched in the floated-GAC biofilm (8.8-19.8% and 5.1-9.5%, respectively), but only existed in low abundances in the settled-GAC biofilm (3.4-3.6% and 0-0.4%, respectively). The floated GAC developed bacterial communities with higher diversity and more syntrophic bacteria enrichments on its surface, including Geobacter, Smithella, and Syntrophomonas, than the settled-GAC biofilm. Common hydrogen-donating syntrophs and hydrogenotrophic archaea, Methanospirillum and Methanoregula, were identified as potential electro-active microorganisms related to DIET

    Calcium hypochlorite enhances the digestibility of and the phosphorus recovery from waste activated sludge

    No full text
    Waste activated sludge (WAS) can be treated using anaerobic digestion (AD) for biogas recovery and volume reduction. However, the poor digestibility and hydrolysis of WAS limit AD applications. The current study investigated the feasibility of applying calcium hypochlorite as a WAS pretreatment strategy to improve AD treatment efficiency using laboratory reactors. The results showed that pretreatment with 5 – 20% Ca(ClO)2 (total suspended solids basis) significantly enhanced WAS anaerobic digestibility, and led to significantly enhanced methane production rate and biomethane yield comparing to the AD of raw WAS (P 2 pretreatment (5 – 10%) significantly enhanced digestion efficiency, which can be attributed to the development of fermentative and syntrophic bacteria. However, high Ca(ClO)2 doses (>20%) reduced microbial activities, leading to slow release of dissolved organic compounds and prolonged methane production lag phase. In addition, high Ca(ClO)2 removed 82.7% of the initial phosphate by calcium-phosphate binding, reducing the phosphorus in liquid digestate.</p

    Enhancing methane production and organic loading capacity from high solid-content wastewater in modified granular activated carbon (GAC)-amended up-flow anaerobic sludge blanket (UASB)

    No full text
    Anaerobic digestion of high solid-content wastewater is hindered by high organic loading rates (OLRs). Granular activated carbon (GAC) was reported to promote direct interspecies electron transfer (DIET) and enhance reactor performance. In this study, three up-flow anaerobic sludge blanket (UASB) reactors were supplied with GAC in different locations: bottom (R1), top (R2), and bottom+top (R3). The performances of three reactors at different OLRs treating high solid-content wastewater were evaluated. At a low OLR, the highest methane yield (74 ± 4 %, g CH4-COD/g TCOD) was detected when GAC was supplied at top of the UASB (R2). When a high OLR was applied, the UASB supplemented with GAC at both bottom and top (R3) achieved the highest methane yield (66 ± 2 %, g CH4-COD/g TCOD), whereas the UASB supplemented with GAC at the top (R2) failed. Further studies on spatial distributions of sludge stability, specific methanogenic activities (SMAs), and microbial communities demonstrated the different impacts of GAC location on reactor performance and sludge characteristics under different OLRs. This study highlights the significance of considering organic loading capacity treating high solid-content wastewater when choosing GAC-based UASB systems.</p

    Impacts of conductive materials on microbial community during syntrophic propionate oxidization for biomethane recovery

    No full text
    Propionate is one of the most important intermediates in anaerobic digestion, and its degradation requires a syntrophic partnership between propionate-oxidizing bacteria and hydrogenotrophic methanogens. Anaerobic digestion efficiency can be improved by direct interspecies electron transfer (DIET) through conductive materials. This study aimed to investigate the effects of DIET on syntrophic propionate oxidization under room temperature (20°C) and reveal the syntrophic partners. Firstly, conventional anaerobic consortium and conductive material-enriched consortium were tested for DIET under high Hpartial pressure. The latter supplemented with granular activated carbon (GAC) can mitigate Hinhibition through DIET. Secondly, a DIET consortium was enriched for testing GAC and magnetite, both showed DIET facilitation. Microbial communities in GAC- and magnetite-supplemented reactors were similar. Syntrophic propionate-oxidizing bacteria, for example, Smithella (3.9%-9.9%) and a genus from the family Syntrophaceae (1.9%-3.6%) and methanogens Methanobacterium (30.3%-75.2%), Methanolinea (8.5%-25.2%), Methanosaeta (11.4%-36.7%), and Candidatus Methanofastidiosum (3.6%-6.6%), were predominant. Functional genes for cell mobility and membrane transport (3.3% and 9.5% in control reactor) increased with GAC (3.7% and 11.1%, respectively) and magnetite (3.7% and 10.9%, respectively) addition. Syntrophic propionate-oxidizing bacteria and methanogenesis partners were revealed by co-occurrence network, for example, Methanobacterium with Smithella, Syntrophobacter, Dechloromonas, and Trichococcus, signifying the importance of the syntrophic partnership in DIET environment. PRACTITIONER POINTS: DIET improved syntrophic propionate oxidization under room temperature condition (20°C). Microbial communities were similar for GAC- and magnetite-supplemented reactors, different with control reactor. Syntrophic propionate-oxidizing bacteria and methanogenesis partners were revealed by co-occurrence network. Methanobacterium and Smithella, Syntrophobacter, Dechloromonas, and Trichococcus were correlated

    Calcium Hypochlorite Pretreatment Enhances Waste-Activated Sludge Degradation during Aerobic Digestion

    No full text
    Conventional activated sludge processes, as the main biological treatment approach for municipal wastewater treatment in centralized wastewater treatment plants (WWTP), generate a large amount of waste-activated sludge (WAS) that needs to be managed before disposal. However, the degradation of WAS is usually limited by the slow hydrolysis rate and low biodegradable rate. Here, an effective pretreatment strategy using calcium hypochlorite treating waste-activated sludge before aerobic digestion was explored. Performance results showed that after the pretreatment with 0.1 g Ca(ClO)2 per gram of total solids (TS), volatile solids (VS) in WAS were reduced by 65.05%±2.68% after 20 days of aerobic digestion, nearly twice the reduction of VS in un-pretreated WAS. The best treatment conditions under tested experiment conditions were 12 h of WAS pretreatment process with 0.1 g Ca(ClO)2 per 1 g TS and 12 days hydraulic retention time (HRT) of aerobic digestion. Kinetic model analysis revealed that the VS reduction of WAS during aerobic digestion was enhanced by the Ca(ClO)2 pretreatment, likely through cell lysis and extracellular polymeric substances (EPS) decomposition. Moreover, microbial community analysis revealed that the relative abundance of certain bacteria (e.g., Xanthomonadaceae, Saprospirales, and Cytophagaceae) increased, which can be attributed to the change of the chemical and biological environment in the aerobic digesters after pretreatment. This study demonstrated the feasibility of applying calcium hypochlorite pretreatment in WAS aerobic digestion to improve sludge digestibility and volume reduction.</p

    Cometabolism accelerated simultaneous ammoxidation and organics mineralization in an oxygen-based membrane biofilm reactor treating greywater under low dissolved oxygen conditions

    No full text
    Carbon/nitrogen ratio is an important parameter during the biological wastewater treatment. Our study emphasizes revealing the mechanisms of chemical oxygen demand/total nitrogen (COD/TN) ratio dependent improved greywater (GW) treatment in an oxygen based membrane biofilm reactor (O2-MBfR). Results showed that reducing COD/TN ratio from 40 to 20 g COD/g N by supplementing NH4Cl to GW improved the relative abundance of genera related to LAS-biodegradation (from 8.39% to 35.7%), nitrification (from 0.20% to 0.62%) and denitrification (from 3.01% to 7.59%). Reducing COD/TN ratio also led to an increase in the ammonia monooxygenase (AMO) activity (from 7.56 to 10.2 mg N/g VSS-h), as well as improved ammoxidation and linear alkylbenzene sulfonate (LAS) mineralization although the dissolved oxygen (DO) concentration and pH decreased. Much higher NH4+ − N at lower COD/TN ratio (10 units) led to lower DO (0.13 ± 0.01 mg/L) and pH (6.72 ± 0.02), but the continuously increased AMO activity (up to 12.9 mg N/g VSS-h) enabled the cometabolism of ammoxidation and LAS mineralization, leading to the efficient removal of organics and nitrogen under the low DO condition

    Enhancing the resistance to H2S toxicity during anaerobic digestion of low-strength wastewater through granular activated carbon (GAC) addition

    No full text
    Low-strength wastewater was treated using two laboratory-scale up-flow anaerobic sludge blankets (UASB) for 130 days under sulfate-reducing conditions. Granular activated carbon (GAC) was added to one of the reactors. The GAC addition increased the total chemical oxygen demand removal by 21–28% and total methane production by 32–78%. The sludge from the GAC-amended UASB showed higher specific methanogenic activities (SMA) and higher activities in the presence of H2S, indicating that the GAC addition enhanced the resistance of methanogens to H2S toxicity. Further, the microbial communities showed that the GAC addition shifted microbial communities. A robust syntrophic partnership between bacteria (i.e., Bacteroidetes_vadinHA17 and Trichococcus) and methanogens was established in the GAC-amended UASB. Sulfate-reducing bacteria (SRB) were enriched in the GAC biofilm, indicating the coexistence of competition and cooperation between SRB and methanogens. These findings provide significant insights regarding microbial community dynamics, especially SRB and methanogens, in a GAC-amended anaerobic digestion process under sulfate-reducing conditions.</p
    corecore