2,798 research outputs found

    Diagrammatic Quantum Monte Carlo solution of the two-dimensional Cooperon-Fermion model

    Full text link
    We investigate the two-dimensional cooperon-fermion model in the correlated regime with a new continuous-time diagrammatic determinant quantum Monte Carlo (DDQMC) algorithm. We estimate the transition temperature TcT_{c}, examine the effectively reduced band gap and cooperon mass, and find that delocalization of the cooperons enhances the diamagnetism. When applied to diamagnetism of the pseudogap phase in high-TcT_{c} cuprates, we obtain results in a qualitative agreement with recent torque magnetization measurements.Comment: 8 pages, 11 figure

    Study the Heavy Molecular States in Quark Model with Meson Exchange Interaction

    Full text link
    Some charmonium-like resonances such as X(3872) can be interpreted as possible D()D()D^{(*)}D^{(*)} molecular states. Within the quark model, we study the structure of such molecular states and the similar B()B()B^{(*)}B^{(*)} molecular states by taking into account of the light meson exchange (π\pi, η\eta, ρ\rho, ω\omega and σ\sigma) between two light quarks from different mesons

    Mechanical Property Characterization of Mouse Zona Pellucida

    Get PDF
    Previous intracytoplasmic sperm injection (ICSI) studies have indicated significant variation in ICSI success rates among different species. In mouse ICSI, the zona pellucida (ZP) undergoes a hardening process at fertilization in order to prevent subsequent sperm from penetrating. There have been few studies investigating changes in the mechanical properties of mouse ZP post fertilization. To characterize mouse ZP mechanical properties and quantitate the mechanical property differences of the ZP before and after fertilization, a microelectromechanical systems-based multiaxis cellular force sensor has been developed. A microrobotic cell manipulation system employing the multiaxis cellular force sensor is used to conduct mouse ZP force sensing, establishing a quantitative relationship between applied forces and biomembrane structural deformations on both mouse oocytes and embryos. An analytical biomembrane elastic model is constructed to describe biomembrane mechanical properties. The characterized elastic modulus of embryos is 2.3 times that of oocytes, and the measured forces for puncturing embryo ZP are 1.7 times those for oocyte ZP. The technique and model presented in this paper can be applied to investigations into the mechanical properties of other biomembranes, such as the plasma membrane of oocytes or other cell types

    Low energy physical properties of high-Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments

    Full text link
    In a recent review by Anderson and coworkers\cite{Vanilla}, it was pointed out that an early resonating valence bond (RVB) theory is able to explain a number of unusual properties of high temperature superconducting (SC) Cu-oxides. Here we extend previous calculations \cite{anderson87,FC Zhang,Randeria} to study more systematically low energy physical properties of the plain vanilla d-wave RVB state, and to compare results with the available experiments. We use a renormalized mean field theory combined with variational Monte Carlo and power Lanczos methods to study the RVB state of an extended tJt-J model in a square lattice with parameters suitable for the hole doped Cu-oxides. The physical observable quantities we study include the specific heat, the linear residual thermal conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode (π,0)(\pi, 0), the superconducting energy gap, the quasiparticle spectra and the Drude weight. The traits of nodes (including kFk_{F}, the Fermi velocity vFv_{F} and the velocity along Fermi surface v2v_{2}), as well as the SC order parameter are also studied. Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially on their doping dependences.Comment: 12 pages, 14 figures, 1 tabl

    Quasiparticles in the Pseudogap Phase of Underdoped Cuprate

    Get PDF
    Recent angle resolved photoemission \cite{yang-nature-08} and scanning tunneling microscopy \cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang \textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.Comment: updated version, 6 pages, 7 figures, 1 table, EPL 86 (2009) 37002 (https://www.epletters.net

    Impact of coronavirus disease 2019 (COVID-19) outbreak quarantine, isolation, and lockdown policies on mental health and suicide

    Get PDF
    The novel coronavirus disease (COVID-19) pandemic has made a huge impact on people\u27s physical and mental health, and it remains a cause of death for many all over the world. To prevent the spread of coronavirus infection, different types of public health measures (social isolation, quarantine, lockdowns, and curfews) have been imposed by governments. However, mental health experts warn that the prolonged lockdown, quarantine, or isolation will create a “second pandemic” with severe mental health issues and suicides. The quarantined or isolated people may suffer from various issues such as physical inactivity, mental health, economic and social problems. As with the SARS outbreak in 2003, many suicide cases have been reported in connection with this current COVID-19 pandemic lockdown due to various factors such as social stigma, alcohol withdrawal syndrome, fear of COVID infection, loneliness, and other mental health issues. This paper provides an overview of risk factors that can cause suicide and outlines possible solutions to prevent suicide in this current COVID-19 pandemic

    Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3.

    Get PDF
    The transcriptional co-activator Yes-associated protein, YAP, is a main effector in the Hippo tumor suppressor pathway. We recently defined a mechanism for positive regulation of YAP through CDK1-mediated mitotic phosphorylation. Here, we show that active YAP promotes pancreatic cancer cell migration, invasion and anchorage-independent growth in a mitotic phosphorylation-dependent manner. Mitotic phosphorylation is essential for YAP-driven tumorigenesis in animals. YAP reduction significantly impairs cell migration and invasion. Immunohistochemistry shows significant upregulation and nuclear localization of YAP in metastases when compared with primary tumors and normal tissue in human. Mitotic phosphorylation of YAP controls a unique transcriptional program in pancreatic cells. Expression profiles reveal LPAR3 (lysophosphatidic acid receptor 3) as a mediator for mitotic phosphorylation-driven pancreatic cell motility and invasion. Together, this work identifies YAP as a novel regulator of pancreatic cancer cell motility, invasion and metastasis, and as a potential therapeutic target for invasive pancreatic cancer

    Integrability of the CnC_{n} and BCnBC_{n} Ruijsenaars-Schneider models

    Get PDF
    We study the CnC_{n} and BCnBC_{n} Ruijsenaars-Schneider(RS) models with interaction potential of trigonometric and rational types. The Lax pairs for these models are constructed and the involutive Hamiltonians are also given. Taking nonrelativistic limit, we also obtain the Lax pairs for the corresponding Calogero-Moser systems.Comment: 20 pages, LaTeX2e, no figure
    corecore