85 research outputs found

    Go/No-Go Ratios Modulate Inhibition-Related Brain Activity: An Event-Related Potential Study

    Get PDF
    (1) Background: Response inhibition refers to the conscious ability to suppress behavioral responses, which is crucial for effective cognitive control. Currently, research on response inhibition remains controversial, and the neurobiological mechanisms associated with response inhibition are still being explored. The Go/No-Go task is a widely used paradigm that can be used to effectively assess response inhibition capability. While many studies have utilized equal numbers of Go and No-Go trials, how different ratios affect response inhibition remains unknown; (2) Methods: This study investigated the impact of different ratios of Go and No-Go conditions on response inhibition using the Go/No-Go task combined with event-related potential (ERP) techniques; (3) Results: The results showed that as the proportion of Go trials decreased, behavioral performance in Go trials significantly improved in terms of response time, while error rates in No-Go trials gradually decreased. Additionally, the NoGo-P3 component at the central average electrodes (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) exhibited reduced amplitude and latency; (4) Conclusions: These findings indicate that different ratios in Go/No-Go tasks influence response inhibition, with the brain adjusting processing capabilities and rates for response inhibition. This effect may be related to the brain's predictive mechanism model

    Stroking hardness changes the perception of affective touch pleasantness across different skin sites

    Get PDF
    Human unmyelinated tactile afferents (CT afferents) in hairy skin are thought to be involved in the transmission of affective aspects of touch. How the perception of affective touch differs across human skin has made substantial progress; however, the majority of previous studies have mainly focused on the relationship between stroking velocities and pleasantness ratings. Here, we investigate how stroking hardness affects the perception of affective touch. Affective tactile stimulation was given with four different hardness of brushes a three different forces, which were presented to either palm or forearm. To quantify the physical factors of the stimuli (brush hardness), ten naive, healthy participants assessed brush hardness using a seven-point scale. Based on these ten participants, five more participants were added to rate the hedonic value of brush stroking using a visual analogue scale (VAS). We found that pleasantness ratings over the skin resulted in a preference for light, soft stroking, which was rated as more pleasant when compared to heavy, hard stroking. Our results show that the hairy skin of the forearm is more susceptible to stroking hardness than the glabrous of the palm in terms of the perception of pleasantness. These findings of the current study extend the growing literature related to the effect of stroking characteristics on pleasantness ratings

    Tactile angle discriminability improvement: roles of training time intervals and different types of training tasks

    Get PDF
    Perceptual learning, which is not limited to sensory modalities such as vision and touch, emerges within a training session and between training sessions and is accompanied by the remodeling of neural connections in the cortex. However, limited knowledge exists regarding perceptual learning between training sessions. Although tactile studies have paid attention to between-session learning effects, there have been few studies asking fundamental questions regarding whether the time interval between training sessions affects tactile perceptual learning and generalization across tactile tasks. We investigated the effects of different training time intervals on the consecutive performance of a tactile angle discrimination (AD) task and a tactile orientation discrimination (OD) task training on tactile angle discriminability. The results indicated that in the short-interval training group, AD task performance significantly improved in the early stage of learning and nearly plateaued in the later stage, whereas in the long-interval training group, significant improvement was delayed and then also nearly plateaued in the later stage; additionally, improved OD task performance resulted in improved AD task performance. These findings suggest that training time interval affects the early stage of learning but not the later stage and that generalization occurs between different types of tactile tasks

    Semantic Congruency Modulates the Effect of Attentional Load on the Audiovisual Integration of Animate Images and Sounds

    Get PDF
    Attentional processes play a complex and multifaceted role in the integration of input from different sensory modalities. However, whether increased attentional load disrupts the audiovisual (AV) integration of common objects that involve semantic content remains unclear. Furthermore, knowledge regarding how semantic congruency interacts with attentional load to influence the AV integration of common objects is limited. We investigated these questions by examining AV integration under various attentional-load conditions. AV integration was assessed by adopting an animal identification task using unisensory (animal images and sounds) and AV stimuli (semantically congruent AV objects and semantically incongruent AV objects), while attentional load was manipulated by using a rapid serial visual presentation task. Our results indicate that attentional load did not attenuate the integration of semantically congruent AV objects. However, semantically incongruent animal sounds and images were not integrated (as there was no multisensory facilitation), and the interference effect produced by the semantically incongruent AV objects was reduced by increased attentional-load manipulations. These findings highlight the critical role of semantic congruency in modulating the effect of attentional load on the AV integration of common objects

    A New Method for Haptic Shape Discriminability Detection

    Get PDF
    Touch shape discrimination is not only closely related to tactile mechanoreceptors but also higher cognitive function. However, previous shape discrimination methods are difficult to complete in a short time, and the devices are complicated to operate and not user-friendly for nonprofessionals. Here, we propose a new method, the evaluation quantity of which is the angle discrimination threshold. In addition, to make this method easy to use for nonprofessionals, we designed a haptic angle sorting system, including the device and software. To evaluate this method, the angle sorting and two-angle discrimination experiments were compared, and it was found that participants spent significantly less time in the former experiment than in the latter. At the same time, there is a strong correlation between the performance of angle sorting and two-angle discrimination, which shows that the angle threshold obtained by the new method can also be used to evaluate the ability of touch discrimination. Moreover, the angle sorting results of different age groups also further demonstrate the feasibility of the method. The efficiency of this new method and the effectiveness of the system also provide a convenient means for evaluating haptic shape discrimination, which may have potential clinical application value in the early diagnosis of peripheral neuropathy and even in the evaluation of cognitive function

    Functional heterogeneity in the left lateral posterior parietal cortex during visual and haptic crossmodal dot-surface matching

    Get PDF
    Background Vision and touch are thought to contribute information to object perception in an independent but complementary manner. The left lateral posterior parietal cortex (LPPC) has long been associated with multisensory information processing, and it plays an important role in visual and haptic crossmodal information retrieval. However, it remains unclear how LPPC subregions are involved in visuo‐haptic crossmodal retrieval processing. Methods In the present study, we used an fMRI experiment with a crossmodal delayed match‐to‐sample paradigm to reveal the functional role of LPPC subregions related to unimodal and crossmodal dot‐surface retrieval. Results The visual‐to‐haptic condition enhanced the activity of the left inferior parietal lobule relative to the haptic unimodal condition, whereas the inverse condition enhanced the activity of the left superior parietal lobule. By contrast, activation of the left intraparietal sulcus did not differ significantly between the crossmodal and unimodal conditions. Seed‐based resting connectivity analysis revealed that these three left LPPC subregions engaged distinct networks, confirming their different functions in crossmodal retrieval processing. Conclusion Taken together, the findings suggest that functional heterogeneity of the left LPPC during visuo‐haptic crossmodal dot‐surface retrieval processing reflects that the left LPPC does not simply contribute to retrieval of past information; rather, each subregion has a specific functional role in resolving different task requirements

    Diffusion Model is Secretly a Training-free Open Vocabulary Semantic Segmenter

    Full text link
    Recent research has explored the utilization of pre-trained text-image discriminative models, such as CLIP, to tackle the challenges associated with open-vocabulary semantic segmentation. However, it is worth noting that the alignment process based on contrastive learning employed by these models may unintentionally result in the loss of crucial localization information and object completeness, which are essential for achieving accurate semantic segmentation. More recently, there has been an emerging interest in extending the application of diffusion models beyond text-to-image generation tasks, particularly in the domain of semantic segmentation. These approaches utilize diffusion models either for generating annotated data or for extracting features to facilitate semantic segmentation. This typically involves training segmentation models by generating a considerable amount of synthetic data or incorporating additional mask annotations. To this end, we uncover the potential of generative text-to-image conditional diffusion models as highly efficient open-vocabulary semantic segmenters, and introduce a novel training-free approach named DiffSegmenter. Specifically, by feeding an input image and candidate classes into an off-the-shelf pre-trained conditional latent diffusion model, the cross-attention maps produced by the denoising U-Net are directly used as segmentation scores, which are further refined and completed by the followed self-attention maps. Additionally, we carefully design effective textual prompts and a category filtering mechanism to further enhance the segmentation results. Extensive experiments on three benchmark datasets show that the proposed DiffSegmenter achieves impressive results for open-vocabulary semantic segmentation

    Different activation signatures in the primary sensorimotor and higher-level regions for haptic three-dimensional curved surface exploration

    Get PDF
    Haptic object perception begins with continuous exploratory contact, and the human brain needs to accumulate sensory information continuously over time. However, it is still unclear how the primary sensorimotor cortex (PSC) interacts with these higher-level regions during haptic exploration over time. This functional magnetic resonance imaging (fMRI) study investigates time-dependent haptic object processing by examining brain activity during haptic 3D curve and roughness estimations. For this experiment, we designed sixteen haptic stimuli (4 kinds of curves x 4 varieties of roughness) for the haptic curve and roughness estimation tasks. Twenty participants were asked to move their right index and middle fingers along the surface twice and to estimate one of the two features -roughness or curvature -depending on the task instruction. We found that the brain activity in several higher-level regions (e.g., the bilateral posterior parietal cortex) linearly increased as the number of curves increased during the haptic exploration phase. Surprisingly, we found that the contralateral PSC was parametrically modulated by the number of curves only during the late exploration phase but not during the early exploration phase. In contrast, we found no similar parametric modulation activity patterns during the haptic roughness estimation task in either the contralateral PSC or in higher-level regions. Thus, our findings suggest that haptic 3D object perception is processed across the cortical hierarchy, whereas the contralateral PSC interacts with other higher-level regions across time in a manner that is dependent upon the features of the object

    Global surface features contribute to human haptic roughness estimations

    Get PDF
    Previous studies have paid special attention to the relationship between local features (e.g., raised dots) and human roughness perception. However, the relationship between global features (e.g., curved surface) and haptic roughness perception is still unclear. In the present study, a series of roughness estimation experiments was performed to investigate how global features affect human roughness perception. In each experiment, participants were asked to estimate the roughness of a series of haptic stimuli that combined local features (raised dots) and global features (sinusoidal-like curves). Experiments were designed to reveal whether global features changed their haptic roughness estimation. Furthermore, the present study tested whether the exploration method (direct, indirect, and static) changed haptic roughness estimations and examined the contribution of global features to roughness estimations. The results showed that sinusoidal-like curved surfaces with small periods were perceived to be rougher than those with large periods, while the direction of finger movement and indirect exploration did not change this phenomenon. Furthermore, the influence of global features on roughness was modulated by local features, regardless of whether raised-dot surfaces or smooth surfaces were used. Taken together, these findings suggested that an object’s global features contribute to haptic roughness perceptions, while local features change the weight of the contribution that global features make to haptic roughness perceptions
    corecore