105 research outputs found

    Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice

    Full text link
    As one of the most fundamental concepts in transportation science, Wardrop equilibrium (WE) has always had a relatively weak behavioral underpinning. To strengthen this foundation, one must reckon with bounded rationality in human decision-making processes, such as the lack of accurate information, limited computing power, and sub-optimal choices. This retreat from behavioral perfectionism in the literature, however, was typically accompanied by a conceptual modification of WE. Here we show that giving up perfect rationality need not force a departure from WE. On the contrary, WE can be reached with global stability in a routing game played by boundedly rational travelers. We achieve this result by developing a day-to-day (DTD) dynamical model that mimics how travelers gradually adjust their route valuations, hence choice probabilities, based on past experiences. Our model, called cumulative logit (CULO), resembles the classical DTD models but makes a crucial change: whereas the classical models assume routes are valued based on the cost averaged over historical data, ours values the routes based on the cost accumulated. To describe route choice behaviors, the CULO model only uses two parameters, one accounting for the rate at which the future route cost is discounted in the valuation relative to the past ones and the other describing the sensitivity of route choice probabilities to valuation differences. We prove that the CULO model always converges to WE, regardless of the initial point, as long as the behavioral parameters satisfy certain mild conditions. Our theory thus upholds WE's role as a benchmark in transportation systems analysis. It also resolves the theoretical challenge posed by Harsanyi's instability problem by explaining why equally good routes at WE are selected with different probabilities

    Enhancing the Protein Tertiary Structure Prediction by Multiple Sequence Alignment Generation

    Full text link
    The field of protein folding research has been greatly advanced by deep learning methods, with AlphaFold2 (AF2) demonstrating exceptional performance and atomic-level precision. As co-evolution is integral to protein structure prediction, AF2's accuracy is significantly influenced by the depth of multiple sequence alignment (MSA), which requires extensive exploration of a large protein database for similar sequences. However, not all protein sequences possess abundant homologous families, and consequently, AF2's performance can degrade on such queries, at times failing to produce meaningful results. To address this, we introduce a novel generative language model, MSA-Augmenter, which leverages protein-specific attention mechanisms and large-scale MSAs to generate useful, novel protein sequences not currently found in databases. These sequences supplement shallow MSAs, enhancing the accuracy of structural property predictions. Our experiments on CASP14 demonstrate that MSA-Augmenter can generate de novo sequences that retain co-evolutionary information from inferior MSAs, thereby improving protein structure prediction quality on top of strong AF2

    Multimodal Large Language Models: A Survey

    Full text link
    The exploration of multimodal language models integrates multiple data types, such as images, text, language, audio, and other heterogeneity. While the latest large language models excel in text-based tasks, they often struggle to understand and process other data types. Multimodal models address this limitation by combining various modalities, enabling a more comprehensive understanding of diverse data. This paper begins by defining the concept of multimodal and examining the historical development of multimodal algorithms. Furthermore, we introduce a range of multimodal products, focusing on the efforts of major technology companies. A practical guide is provided, offering insights into the technical aspects of multimodal models. Moreover, we present a compilation of the latest algorithms and commonly used datasets, providing researchers with valuable resources for experimentation and evaluation. Lastly, we explore the applications of multimodal models and discuss the challenges associated with their development. By addressing these aspects, this paper aims to facilitate a deeper understanding of multimodal models and their potential in various domains.Comment: IEEE BigData 2023. 10 page

    Emerging Applications of Reversible Data Hiding

    Full text link
    Reversible data hiding (RDH) is one special type of information hiding, by which the host sequence as well as the embedded data can be both restored from the marked sequence without loss. Beside media annotation and integrity authentication, recently some scholars begin to apply RDH in many other fields innovatively. In this paper, we summarize these emerging applications, including steganography, adversarial example, visual transformation, image processing, and give out the general frameworks to make these operations reversible. As far as we are concerned, this is the first paper to summarize the extended applications of RDH.Comment: ICIGP 201
    • …
    corecore