2,600 research outputs found

    Temporal GIS Design of an Extended Time-geographic Framework for Physical and Virtual Activities

    Get PDF
    Recent rapid developments of information and communication technologies (ICT) enable a virtual space, which allows people to conduct activities remotely through tele-presence rather than through conventional physical presence in physical space. ICT offer people additional freedom in space and time to carry out their activities; this freedom leads to changes in the spatio-temporal distributions of activities. Given that activities are the reasons for travel, these changes will impact transportation systems. Therefore, a better understanding of the spatial and temporal characteristics of human activities in today’s society will help researchers study the impact of ICT on transportation. Using an integrated space-time system, Hägerstrand’s time geography provides an effective framework for studying the relationships of various constraints and human activities in physical space, but it does not support activities in virtual space. The present study provides a conceptual model to describe the relationships of physical space and virtual space, extending Hägerstrand’s time geography to handle both physical and virtual activities. This extended framework is used to support investigations of spatial and temporal characteristics of human activities and their interactions in physical and virtual spaces. Using a 3D environment (i.e., 2D space + 1D time), a temporal GIS design is developed to accommodate the extended time-geographic framework. This GIS design supports representations of time-geographic objects (e.g., space-time paths, networkbased space-time prisms, and space-time life paths) and a selected set of analysis functions applied to these objects (e.g., temporal dynamic segmentation and spatiotemporal intersection). A prototype system, with customized functions developed in Visual Basic for Applications (VBA) programs with ArcObjects, is implemented in ArcGIS according to the design. Using a hypothetical activity dataset, the system demonstrates the feasibility of the extended framework and the temporal GIS design to explore physical and virtual activities. This system offers useful tools with which to tackle various real problems related to physical and virtual activities

    Cognitive and neural bases of visual-context-guided decision-making

    Get PDF
    Humans adjust their behavioral strategies based on feedback, a process that may depend on intrinsic preferences and contextual factors such as visual salience. In this study, we hypothesized that decision-making based on visual salience is influenced by habitual and goal-directed processes, which can be evidenced by changes in attention and subjective valuation systems. To test this hypothesis, we conducted a series of studies to investigate the behavioral and neural mechanisms underlying visual salience-driven decision-making. We first established the baseline behavioral strategy without salience in Experiment 1 (n = 21). We then highlighted the utility or performance dimension of the chosen outcome using colors in Experiment 2 (n = 30). We demonstrated that the difference in staying frequency increased along the salient dimension, confirming a salience effect. Furthermore, the salience effect was abolished when directional information was removed in Experiment 3 (n = 28), suggesting that the salience effect is feedback-specific. To generalize our findings, we replicated the feedback-specific salience effects using eye-tracking and text emphasis. The fixation differences between the chosen and unchosen values were enhanced along the feedback-specific salient dimension in Experiment 4 (n = 48) but unchanged after removing feedback-specific information in Experiment 5 (n = 32). Moreover, the staying frequency was correlated with fixation properties, confirming that salience guides attention deployment. Lastly, our neuroimaging study (Experiment 6, n = 25) showed that the striatum subregions encoded salience-based outcome evaluation, while the vmPFC encoded salience-based behavioral adjustments. The connectivity of the vmPFC-ventral striatum accounted for individual differences in utility-driven, whereas the vmPFC-dmPFC for performance-driven behavioral adjustments. Together, our results provide a neurocognitive account of how task-irrelevant visual salience drives decision-making by involving attention and the frontal-striatal valuation systems. PUBLIC SIGNIFICANCE STATEMENT: Humans may use the current outcome to make behavior adjustments. How this occurs may depend on stable individual preferences and contextual factors, such as visual salience. Under the hypothesis that visual salience determines attention and subsequently modulates subjective valuation, we investigated the underlying behavioral and neural bases of visual-context-guided outcome evaluation and behavioral adjustments. Our findings suggest that the reward system is orchestrated by visual context and highlight the critical role of attention and the frontal-striatal neural circuit in visual-context-guided decision-making that may involve habitual and goal-directed processes

    Analyzing Integrated Cost-Schedule Risk for Complex Product Systems R&D Projects

    Get PDF

    Sketch2Stress: Sketching with Structural Stress Awareness

    Full text link
    In the process of product design and digital fabrication, the structural analysis of a designed prototype is a fundamental and essential step. However, such a step is usually invisible or inaccessible to designers at the early sketching phase. This limits the user's ability to consider a shape's physical properties and structural soundness. To bridge this gap, we introduce a novel approach Sketch2Stress that allows users to perform structural analysis of desired objects at the sketching stage. This method takes as input a 2D freehand sketch and one or multiple locations of user-assigned external forces. With the specially-designed two-branch generative-adversarial framework, it automatically predicts a normal map and a corresponding structural stress map distributed over the user-sketched underlying object. In this way, our method empowers designers to easily examine the stress sustained everywhere and identify potential problematic regions of their sketched object. Furthermore, combined with the predicted normal map, users are able to conduct a region-wise structural analysis efficiently by aggregating the stress effects of multiple forces in the same direction. Finally, we demonstrate the effectiveness and practicality of our system with extensive experiments and user studies.Comment: 16 figure

    Sketch Beautification: Learning Part Beautification and Structure Refinement for Sketches of Man-made Objects

    Full text link
    We present a novel freehand sketch beautification method, which takes as input a freely drawn sketch of a man-made object and automatically beautifies it both geometrically and structurally. Beautifying a sketch is challenging because of its highly abstract and heavily diverse drawing manner. Existing methods are usually confined to the distribution of their limited training samples and thus cannot beautify freely drawn sketches with rich variations. To address this challenge, we adopt a divide-and-combine strategy. Specifically, we first parse an input sketch into semantic components, beautify individual components by a learned part beautification module based on part-level implicit manifolds, and then reassemble the beautified components through a structure beautification module. With this strategy, our method can go beyond the training samples and handle novel freehand sketches. We demonstrate the effectiveness of our system with extensive experiments and a perceptive study.Comment: 13 figure
    • …
    corecore