436 research outputs found
Experimental Observation of Earth's Rotation with Quantum Entanglement
Precision interferometry with quantum states has emerged as an essential tool
for experimentally answering fundamental questions in physics. Optical quantum
interferometers are of particular interest due to mature methods for generating
and manipulating quantum states of light. The increased sensitivity offered by
these states promises to enable quantum phenomena, such as entanglement, to be
tested in unprecedented regimes where tiny effects due to gravity come into
play. However, this requires long and decoherence-free processing of quantum
entanglement, which has not yet been explored for large interferometric areas.
Here we present a table-top experiment using maximally path-entangled quantum
states of light in an interferometer with an area of 715 m, sensitive
enough to measure the rotation rate of Earth. A rotatable setup and an active
area switching technique allow us to control the coupling of Earth's rotation
to an entangled pair of single photons. The achieved sensitivity of 5
rad/s constitutes the highest rotation resolution ever achieved with
optical quantum interferometers, surpassing previous work by three orders of
magnitude. Our result demonstrates the feasibility of extending the utilization
of maximally entangled quantum states to large-scale interferometers. Further
improvements to our methodology will enable measurements of
general-relativistic effects on entangled photons opening the way to further
enhance the precision of fundamental measurements to explore the interplay
between quantum mechanics and general relativity along with searches for new
physics
Frequency-Dependent Squeezing for Advanced LIGO
The first detection of gravitational waves by the Laser Interferometer
Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational
wave astronomy. The quest for gravitational wave signals from objects that are
fainter or farther away impels technological advances to realize ever more
sensitive detectors. Since 2019, one advanced technique, the injection of
squeezed states of light is being used to improve the shot noise limit to the
sensitivity of the Advanced LIGO detectors, at frequencies above Hz.
Below this frequency, quantum back action, in the form of radiation pressure
induced motion of the mirrors, degrades the sensitivity. To simultaneously
reduce shot noise at high frequencies and quantum radiation pressure noise at
low frequencies requires a quantum noise filter cavity with low optical losses
to rotate the squeezed quadrature as a function of frequency. We report on the
observation of frequency-dependent squeezed quadrature rotation with rotation
frequency of 30Hz, using a 16m long filter cavity. A novel control scheme is
developed for this frequency-dependent squeezed vacuum source, and the results
presented here demonstrate that a low-loss filter cavity can achieve the
squeezed quadrature rotation necessary for the next planned upgrade to Advanced
LIGO, known as "A+."Comment: 6 pages, 2 figures, to be published in Phys. Rev. Let
Quantum correlations between the light and kilogram-mass mirrors of LIGO
Measurement of minuscule forces and displacements with ever greater precision encounters a limit imposed by a pillar of quantum mechanics: the Heisenberg uncertainty principle. A limit to the precision with which the position of an object can be measured continuously is known as the standard quantum limit (SQL) [1–4]. When light is used as the probe, the SQL arises from the balance between the uncertainties of photon radiation pressure imposed on the object and of the photon number in the photoelectric detection. The only possibility surpassing the SQL is via correlations within the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light it reflects [5]. Here, we experimentally prove the theoretical prediction that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). Our measurements show that the quantum mechanical uncertainties in the phases of the 200 kW laser beams and in the positions of the 40 kg mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty a factor of 1.4 (3 dB) below the SQL. We anticipate that quantum correlations will not only improve gravitational wave (GW) observatories but all types of measurements in future
LIGO’s quantum response to squeezed states
Gravitational wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the Universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector’s quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing’s simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and—for the first time—give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors
Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy
The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1)
Frequency-Dependent Squeezing for Advanced LIGO
The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light, is being used to improve the shot-noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50Hz. Below this frequency, quantum backaction, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30 Hz, using a 16-m-long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as “A+.
Quantum correlations between light and the kilogram-mass mirrors of LIGO
The measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit1,2,3,4. When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects5. Here we confirm experimentally the theoretical prediction5 that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements
Quantum correlations between the light and kilogram-mass mirrors of LIGO
The measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit1,2,3,4. When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects5. Here we confirm experimentally the theoretical prediction5 that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements.LIGO was constructed by the California Institute of Technology and the
Massachusetts Institute of Technology with funding from the National Science Foundation,
and operates under Cooperative Agreement number PHY-1764464. Advanced LIGO was built
under grant number PHY-0823459. The authors gratefully acknowledge the support of the
Australian Research Council under the ARC Centre of Excellence for Gravitational Wave
Discovery grant number CE170100004, Linkage Infrastructure, Equipment and Facilities grant
number LE170100217 and Discovery Early Career Award number DE190100437; the National
Science Foundation Graduate Research Fellowship under grant number 1122374; the Science
and Technology Facilities Council of the United Kingdom; and the LIGO Scientific
Collaboration Fellows programme
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0 × 10 -8 . We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between -3 × 10 -15 and +7 × 10 -16 times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
- …