61 research outputs found

    Privacy-Preserving Decentralized Inference with Graph Neural Networks in Wireless Networks

    Full text link
    As an efficient neural network model for graph data, graph neural networks (GNNs) recently find successful applications for various wireless optimization problems. Given that the inference stage of GNNs can be naturally implemented in a decentralized manner, GNN is a potential enabler for decentralized control/management in the next-generation wireless communications. Privacy leakage, however, may occur due to the information exchanges among neighbors during decentralized inference with GNNs. To deal with this issue, in this paper, we analyze and enhance the privacy of decentralized inference with GNNs in wireless networks. Specifically, we adopt local differential privacy as the metric, and design novel privacy-preserving signals as well as privacy-guaranteed training algorithms to achieve privacy-preserving inference. We also define the SNR-privacy trade-off function to analyze the performance upper bound of decentralized inference with GNNs in wireless networks. To further enhance the communication and computation efficiency, we adopt the over-the-air computation technique and theoretically demonstrate its advantage in privacy preservation. Through extensive simulations on the synthetic graph data, we validate our theoretical analysis, verify the effectiveness of proposed privacy-preserving wireless signaling and privacy-guaranteed training algorithm, and offer some guidance on practical implementation.Comment: This paper has been accepted by TW

    Alleviating Distortion Accumulation in Multi-Hop Semantic Communication

    Full text link
    Recently, semantic communication has been investigated to boost the performance of end-to-end image transmission systems. However, existing semantic approaches are generally based on deep learning and belong to lossy transmission. Consequently, as the receiver continues to transmit received images to another device, the distortion of images accumulates with each transmission. Unfortunately, most recent advances overlook this issue and only consider single-hop scenarios, where images are transmitted only once from a transmitter to a receiver. In this letter, we propose a novel framework of a multi-hop semantic communication system. To address the problem of distortion accumulation, we introduce a novel recursive training method for the encoder and decoder of semantic communication systems. Specifically, the received images are recursively input into the encoder and decoder to retrain the semantic communication system. This empowers the system to handle distorted received images and achieve higher performance. Our extensive simulation results demonstrate that the proposed methods significantly alleviate distortion accumulation in multi-hop semantic communication
    • …
    corecore