110 research outputs found

    From Relativity to Creation of Temporal (t > 0) Universe

    Get PDF
    One of the important aspects of science must be the substantiated physical realities, which were built by the fundamental laws of physics that cannot be simply substituted by unsubstantiated virtual reality. In writing this chapter we have mostly based on the constraints of the current laws of physics to illustrate the enigmatic time as the origin for creating our physical space (i.e., temporal universe). The differences between physical reality and virtual reality are that physical reality is existing within the rule of time and supported by the laws of science, while virtual reality is created without the constraints of time and mostly not substantiated by the laws of physics. One of the important aspects of temporal (i.e., t > 0) space is that any emerging science has to be proven to exist within our temporal universe; otherwise it is fictitious and virtual as mathematics is

    What Is “Wrong” with Current Theoretical Physicists?

    Get PDF
    Theoretical physics uses amazing mathematical paradigm and added with fantastic computer animation provides very convincing results. But mathematical modeling and computer animation are virtual and fictitious, for which many of their analytical solutions are not physically real. What is wrong with current theoretical physicists is that they have used mostly a timeless (t = 0) mathematical subspace for their analyses that does not exist within our temporal (t > 0) universe. The reason is it is not how rigorous and fancies the mathematics (or computer simulation) are; it is the essence of a physical realizable paradigm. For instance, timeless (t = 0) model has been used since the beginning of science; although it has produced uncountable excellent results, it has also produced many solutions that are timeless (t = 0) or nonexistent solutions within our temporal (t > 0) universe. In this article, I will show a few evidences that the theoretical analyses have done to physics, which includes some of the world-renowned theoretical scientists, past and present. Yet, theoretical physicists were and still are the creators for all the fundamental laws and principles of physics; it is their “responsibility” to take us back to the physical realizable world of science; otherwise we will be still trapped within a virtual timeless (t = 0) land of mathematics. In short, I anticipate that Temporal (t > 0) Physics will be a mainstream realizable physics in the years to come

    Schrödinger’s Cat and His Timeless (t = 0) Quantum World

    Get PDF
    The most famous cat in modern physics must be the Schrodinger’s cat, in which he hypothesized that his cat cannot be determined alive or dead until we look into his box, by which the paradox of his half-live cat had been puzzling the quantum physicists over three quarter of a century since Schrödinger disclosed it in a Copenhagen forum in 1935. Since the disclosure, the paradox has been debated by Einstein, Bohr, Schrodinger, and many other renowned physicists, until now. We have found the cause of the paradox, and we will show in this chapter of which the hypothesis of Schrodinger’s cat is not a paradox after all. It was the timeless radioactive particle he introduced into the box, since timeless and temporal spaces are mutually exclusive. We will show that the whole quantum world is timeless (i.e., t = 0), since quantum mechanics can be regarded as mathematics

    Temporal (t > 0) Space and Gravitational Waves

    Get PDF
    I will begin with the nature of our temporal (t > 0) universe, since without temporal space there would be no gravitation force because gravitational field cannot be created within an empty space. When we are dealing with physical realizability of science, Einstein’s relativity theories cannot be ignored since relativistic mechanics is dealing with very large objects. Nevertheless I will show that huge gravitational waves can be created by a gigantic mass annihilation only within a temporal (t > 0) space. Since gravitational energy has never been consider as a significant component within big bang creation, I will show it is a key component to ignite the big bang explosion, contrary to commonly believed that big bang explosion was ignited by time. I will show a huge gravitation energy reservoir induced by a gigantic mass had had been created over time well before the big bang started. Since the assumed singularity mass within a temporal (t > 0) had had gotten heavier and heavier similar to a gigantic black hole that continuingly swallows up huge chunk of substances within the space. From which we see that it is the gravitational force that triggers the thermo-nuclei big bang creation, instead ignited by time as postulated. Aside the thermo-nuclei creation, it had a gigantic gravitational wave release as mass annihilates rapidly by big bang explosion. From which we see that it is the induced gravitational reservoir changes with time, but not the induced gravity changes (i.e., curves) time–space. In other words if there has no temporal (t > 0) space then there will be no gravitational waves

    Nature of Temporal (t > 0) Quantum Theory: Part I

    Get PDF
    It is our science governs the mathematics and it is “not” our mathematics governs our science. One of the very important aspects is that every science has to comply with the boundary condition of our universe; dimensionality and temporal (t > 0) or causality. In which I have shown that time is real and it is not an illusion, since every aspect within our universe is coexisted with time. Since our universe is a temporal (t > 0) subspace, everything within our universe is temporal. Science is mathematics but mathematics is not science, we have shown that any analytic solution has to be temporal (t > 0); otherwise, it cannot be implemented within our universe. Which includes all the laws, principles, and theories have to be temporal? Uncertainty principle is one of the most fascinated principles in quantum mechanics, yet Heisenberg principle was based on diffraction limited observation, it is not due to the nature of time. We have shown it is the temporal (t > 0) uncertainty that changes with time. We have introduced a certainty principle as in contrast with uncertainty principle. Of which certainty subspace can be created within our universe; which can be exploited for application. Overall of this chapter is to show that; it is not how rigorous the mathematics is, it is the physical realizable paradigm that we embrace

    From Schrödinger Equation to Quantum Conspiracy

    Get PDF
    Schrödinger’s quantum mechanics is a legacy of Hamiltonian’s classical mechanics. But Hamiltonian mechanics was developed from an empty space paradigm, for which Schrödinger’s equation is a timeless (t = 0) or time-independent deterministic equation, which includes his fundamental principle of superposition. When one is dealing Schrödinger equation, it is unavoidable not to mention about Schrödinger ‘s cat. Which is one of the most elusive cats in modern science since disclosed the half-life cat hypothesis in 1935. The cat is alive or not had been debated by score of world renounced scientists it is still debating. Yet I will show Schrödinger ‘s hypothesis is not a physically realizable hypothesis, for which it has nothing for us to debate about. But quantum communication and computing rely on qubit information algorithm, I will show that qubit information logic is as elusive as Schrödinger’s cat. It exists only within an empty space, but not exists within our temporal (t > 0) universe. Since there is always a price to pay within our universe, I will show that every physical subspace needs a section of time ∆t and an amount of energy ∆E to create and it is not free. Although, double slit hypothesis had been fictitiously confirmed that superposition principle exists, but I will show that double-slit postulation is another non-physically realizable hypothesis that had let us to believing superposition principle is actually existed within our time–space. Yet one of the worst coverup must be particles behaved differently within a micro space to justify the spooky superposition principle, which is one of greatest quantum conspiracy in modern science. Nevertheless, the art of quantum mechanics is all about a physically realizable equation, we see that everything existed within our universe, no matter how small it is, it has to be temporal (t > 0) which includes all the laws, principles, and equations. Otherwise, it is virtual as mathematics is since Schrodinger equation is mathematics, but mathematics is not equaled to science. Finally, when science turns to virtual reality for solution it is not a reliable answer. But when science turns to physical reality for an answer it is a reliable solution

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe
    corecore