1,034 research outputs found
On an Asymptotic Series of Ramanujan
An asymptotic series in Ramanujan's second notebook (Entry 10, Chapter 3) is
concerned with the behavior of the expected value of for large
where is a Poisson random variable with mean and
is a function satisfying certain growth conditions. We generalize this by
studying the asymptotics of the expected value of when the
distribution of belongs to a suitable family indexed by a convolution
parameter. Examples include the problem of inverse moments for distribution
families such as the binomial or the negative binomial.Comment: To appear, Ramanujan
Kondo spin liquid and magnetically long-range ordered states in the Kondo necklace model
A simplified version of the symmetric Kondo lattice model, the Kondo necklace
model, is studied by using a representation of impurity and conduction electron
spins in terms of local Kondo singlet and triplet operators. Within a mean
field theory, a spin gap always appears in the spin triplet excitation spectrum
in 1D, leading to a Kondo spin liquid state for any finite values of coupling
strength (with as hopping and as exchange); in 2D and 3D cubic
lattices the spin gaps are found to vanish continuously around and , respectively, where quantum phase transitions
occur and the Kondo spin liquid state changes into an antiferromagnetically
long-range ordered state. These results are in agreement with variational Monte
Carlo, higher-order series expansion, and recent quantum Monte Carlo
calculations for the symmetric Kondo lattice modelComment: Revtex, four pages, three figures; to be published in Physical Review
B1, 1 July (2000
Numerical renormalization group study of the 1D t-J model
The one-dimensional (1D) model is investigated using the density matrix
renormalization group (DMRG) method. We report for the first time a
generalization of the DMRG method to the case of arbitrary band filling and
prove a theorem with respect to the reduced density matrix that accelerates the
numerical computation. Lastly, using the extended DMRG method, we present the
ground state electron momentum distribution, spin and charge correlation
functions. The anomaly of the momentum distribution function first
discussed by Ogata and Shiba is shown to disappear as increases. We also
argue that there exists a density-independent beyond which the system
becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio
Finite temperature properties of the 2D Kondo lattice model
Using recently developed Lanczos technique we study finite-temperature
properties of the 2D Kondo lattice model at various fillings of the conduction
band. At half filling the quasiparticle gap governs physical properties of the
chemical potential and the charge susceptibility at small temperatures. In the
intermediate coupling regime quasiparticle gap scales approximately linearly
with Kondo coupling. Temperature dependence of the spin susceptibility reveals
the existence of two different temperature scales. A spin gap in the
intermediate regime leads to exponential drop of the spin susceptibility at low
temperatures. Unusual scaling of spin susceptibility is found for temperatures
above 0.6 J. Charge susceptibility at finite doping reveals existence of heavy
quasiparticles. A new low energy scale is found at finite doping.Comment: REVTeX, 7 pages, 7 figure
Localized states in 2D semiconductors doped with magnetic impurities in quantizing magnetic field
A theory of magnetic impurities in a 2D electron gas quantized by a strong
magnetic field is formulated in terms of Friedel-Anderson theory of resonance
impurity scattering. It is shown that this scattering results in an appearance
of bound Landau states with zero angular moment between the Landau subbands.
The resonance scattering is spin selective, and it results in a strong spin
polarization of Landau states, as well as in a noticeable magnetic field
dependence of the factor and the crystal field splitting of the impurity
levels.Comment: 12 pages, 4 figures Submitted to Physical Review B This version is
edited and updated in accordance with recent experimental dat
International energy agency ocean energy systems task 10 wave energy converter modeling verification and validation
This is the first joint reference paper for the Ocean
Energy Systems (OES) Task 10 Wave Energy Converter modeling
verification and validation group. The group is established
under the OES Energy Technology Network program under the
International Energy Agency. OES was founded in 2001 and
Task 10 was proposed by Bob Thresher (National Renewable
Energy Laboratory) in 2015 and approved by the OES Executive
Committee EXCO in 2016. The kickoff workshop took place in
September 2016, wherein the initial baseline task was defined.
Experience from similar offshore wind validation/verification
projects (OC3-OC5 conducted within the International Energy
Agency Wind Task 30) [1], [2] showed that a simple test
case would help the initial cooperation to present results in
a comparable way. A heaving sphere was chosen as the first
test case. The team of project participants simulated different
numerical experiments, such as heave decay tests and regular
and irregular wave cases. The simulation results are presented
and discussed in this paper.IEA-OES Task 1
Quantum discord evolution of three-qubit states under noisy channels
We investigated the dissipative dynamics of quantum discord for correlated
qubits under Markovian environments.
The basic idea in the present scheme is that quantum discord is more general,
and possibly more robust and fundamental, than entanglement. We provide three
initially correlated qubits in pure Greenberger-Horne-Zeilinger (GHZ) or W
state and analyse the time evolution of the quantum discord under various
dissipative channels such as:
Pauli channels , , and , as well as
depolarising channels. Surprisingly, we find that under the action of Pauli
channel , the quantum discord of GHZ state is not affected by
decoherence. For the remaining dissipative channels, the W state is more robust
than the GHZ state against decoherence. Moreover, we compare the dynamics of
entanglement with that of the quantum discord under the conditions in which
disentanglement occurs and show that quantum discord is more robust than
entanglement except for phase flip coupling of the three qubits system to the
environment.Comment: 17 pages, 4 figures, accepted for publication in EPJ
Heart rate variability and peripheral nerve conduction velocity in relation to blood lead in newly hired lead workers.
Previous studies relating nervous activity to blood lead (BL) levels have limited relevance, because over time environmental and occupational exposure substantially dropped. We investigated the association of heart rate variability (HRV) and median nerve conduction velocity (NCV) with BL using the baseline measurements collected in the Study for Promotion of Health in Recycling Lead (NCT02243904).
In 328 newly hired men (mean age 28.3 years; participation rate 82.7%), we derived HRV measures (power expressed in normalised units (nu) in the high-frequency (HF) and low-frequency (LF) domains, and LF/HF) prior to long-term occupational lead exposure. Five-minute ECG recordings, obtained in the supine and standing positions, were analysed by Fourier transform or autoregressive modelling, using Cardiax software. Motor NCV was measured at the median nerve by a handheld device (Brevio Nerve Conduction Monitoring System, NeuMed, West Trenton, NJ, USA). BL was determined by inductively coupled plasma mass spectrometry.
Mean BL was 4.54 µg/dL (IQR 2.60-8.90 µg/dL). Mean supine and standing values of LF, HF and LF/HF were 50.5 and 21.1 nu and 2.63, and 59.7 and 10.9 nu and 6.31, respectively. Orthostatic stress decreased HF and increased LF (p<0.001). NCV averaged 3.74 m/s. Analyses across thirds of the BL distribution and multivariable-adjusted regression analyses failed to demonstrate any association of HRV or NCV with BL.
At the exposure levels observed in our study, autonomous nervous activity and NCV were not associated with BL.
NCT02243904
Hall Effect and Resistivity in High-Tc Superconductors: The Conserving Approximation
The Hall coefficient (R_H) of high-Tc cuprates in the normal state shows the
striking non-Fermi liquid behavior: R_H follows a Curie-Weiss type temperature
dependence, and |R_H|>>1/|ne| at low temperatures in the under-doped compounds.
Moreover, R_H is positive for hole-doped compounds and is negative for
electron-doped ones, although each of them has a similar hole-like Fermi
surface. In this paper, we give the explanation of this long-standing problem
from the standpoint of the nearly antiferromagnetic (AF) Fermi liquid. We
consider seriously the vertex corrections for the current which are
indispensable to satisfy the conservation laws, which are violated within the
conventional Boltzmann transport approximation. The obtained total current J_k
takes an enhanced value and is no more perpendicular to the Fermi surface due
to the strong AF fluctuations. By virtue of this mechanism, the anomalous
behavior of R_H in high-Tc cuprates is neutrally explained. We find that both
the temperature and the (electron, or hole) doping dependences of R_H in
high-T_c cuprates are reproduced well by numerical calculations based on the
fluctuation-exchange (FLEX) approximation, applied to the single-band Hubbard
model. We also discuss the temperature dependence of R_H in other nearly AF
metals, e.g., V_2O_3, kappa-BEDT-TTF organic superconductors, and heavy fermion
systems close to the AF phase boundary.Comment: 19 pages, to appear in Phys. Rev. B, No.59, Vol.22, 199
Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow
By employing a self-similar, two-fluid MHD model in a cylindrical geometry,
we study the features of nonlinear ion-acoustic (IA) waves which propagate in
the direction of external magnetic field lines in space plasmas. Numerical
calculations not only expose the well-known three shapes of nonlinear
structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by
numerous satellites and simulated by models in a Cartesian geometry, but also
illustrate new results, such as, two reversely propagating nonlinear waves,
density dips and humps, diverging and converging electric shocks, etc. A case
study on Cluster satellite data is also introduced.Comment: accepted by AS
- …