1,034 research outputs found

    On an Asymptotic Series of Ramanujan

    Get PDF
    An asymptotic series in Ramanujan's second notebook (Entry 10, Chapter 3) is concerned with the behavior of the expected value of ϕ(X)\phi(X) for large λ\lambda where XX is a Poisson random variable with mean λ\lambda and ϕ\phi is a function satisfying certain growth conditions. We generalize this by studying the asymptotics of the expected value of ϕ(X)\phi(X) when the distribution of XX belongs to a suitable family indexed by a convolution parameter. Examples include the problem of inverse moments for distribution families such as the binomial or the negative binomial.Comment: To appear, Ramanujan

    Kondo spin liquid and magnetically long-range ordered states in the Kondo necklace model

    Full text link
    A simplified version of the symmetric Kondo lattice model, the Kondo necklace model, is studied by using a representation of impurity and conduction electron spins in terms of local Kondo singlet and triplet operators. Within a mean field theory, a spin gap always appears in the spin triplet excitation spectrum in 1D, leading to a Kondo spin liquid state for any finite values of coupling strength t/Jt/J (with tt as hopping and JJ as exchange); in 2D and 3D cubic lattices the spin gaps are found to vanish continuously around (t/J)c0.70(t/J)_c\approx 0.70 and (t/J)c0.38(t/J)_c\approx 0.38, respectively, where quantum phase transitions occur and the Kondo spin liquid state changes into an antiferromagnetically long-range ordered state. These results are in agreement with variational Monte Carlo, higher-order series expansion, and recent quantum Monte Carlo calculations for the symmetric Kondo lattice modelComment: Revtex, four pages, three figures; to be published in Physical Review B1, 1 July (2000

    Numerical renormalization group study of the 1D t-J model

    Full text link
    The one-dimensional (1D) tJt-J model is investigated using the density matrix renormalization group (DMRG) method. We report for the first time a generalization of the DMRG method to the case of arbitrary band filling and prove a theorem with respect to the reduced density matrix that accelerates the numerical computation. Lastly, using the extended DMRG method, we present the ground state electron momentum distribution, spin and charge correlation functions. The 3kF3k_F anomaly of the momentum distribution function first discussed by Ogata and Shiba is shown to disappear as JJ increases. We also argue that there exists a density-independent JcJ_c beyond which the system becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio

    Finite temperature properties of the 2D Kondo lattice model

    Full text link
    Using recently developed Lanczos technique we study finite-temperature properties of the 2D Kondo lattice model at various fillings of the conduction band. At half filling the quasiparticle gap governs physical properties of the chemical potential and the charge susceptibility at small temperatures. In the intermediate coupling regime quasiparticle gap scales approximately linearly with Kondo coupling. Temperature dependence of the spin susceptibility reveals the existence of two different temperature scales. A spin gap in the intermediate regime leads to exponential drop of the spin susceptibility at low temperatures. Unusual scaling of spin susceptibility is found for temperatures above 0.6 J. Charge susceptibility at finite doping reveals existence of heavy quasiparticles. A new low energy scale is found at finite doping.Comment: REVTeX, 7 pages, 7 figure

    Localized states in 2D semiconductors doped with magnetic impurities in quantizing magnetic field

    Full text link
    A theory of magnetic impurities in a 2D electron gas quantized by a strong magnetic field is formulated in terms of Friedel-Anderson theory of resonance impurity scattering. It is shown that this scattering results in an appearance of bound Landau states with zero angular moment between the Landau subbands. The resonance scattering is spin selective, and it results in a strong spin polarization of Landau states, as well as in a noticeable magnetic field dependence of the gg factor and the crystal field splitting of the impurity dd levels.Comment: 12 pages, 4 figures Submitted to Physical Review B This version is edited and updated in accordance with recent experimental dat

    International energy agency ocean energy systems task 10 wave energy converter modeling verification and validation

    Get PDF
    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.IEA-OES Task 1

    Quantum discord evolution of three-qubit states under noisy channels

    Full text link
    We investigated the dissipative dynamics of quantum discord for correlated qubits under Markovian environments. The basic idea in the present scheme is that quantum discord is more general, and possibly more robust and fundamental, than entanglement. We provide three initially correlated qubits in pure Greenberger-Horne-Zeilinger (GHZ) or W state and analyse the time evolution of the quantum discord under various dissipative channels such as: Pauli channels σx\sigma_{x}, σy\sigma_{y}, and σz\sigma_{z}, as well as depolarising channels. Surprisingly, we find that under the action of Pauli channel σx\sigma_{x}, the quantum discord of GHZ state is not affected by decoherence. For the remaining dissipative channels, the W state is more robust than the GHZ state against decoherence. Moreover, we compare the dynamics of entanglement with that of the quantum discord under the conditions in which disentanglement occurs and show that quantum discord is more robust than entanglement except for phase flip coupling of the three qubits system to the environment.Comment: 17 pages, 4 figures, accepted for publication in EPJ

    Heart rate variability and peripheral nerve conduction velocity in relation to blood lead in newly hired lead workers.

    Get PDF
    Previous studies relating nervous activity to blood lead (BL) levels have limited relevance, because over time environmental and occupational exposure substantially dropped. We investigated the association of heart rate variability (HRV) and median nerve conduction velocity (NCV) with BL using the baseline measurements collected in the Study for Promotion of Health in Recycling Lead (NCT02243904). In 328 newly hired men (mean age 28.3 years; participation rate 82.7%), we derived HRV measures (power expressed in normalised units (nu) in the high-frequency (HF) and low-frequency (LF) domains, and LF/HF) prior to long-term occupational lead exposure. Five-minute ECG recordings, obtained in the supine and standing positions, were analysed by Fourier transform or autoregressive modelling, using Cardiax software. Motor NCV was measured at the median nerve by a handheld device (Brevio Nerve Conduction Monitoring System, NeuMed, West Trenton, NJ, USA). BL was determined by inductively coupled plasma mass spectrometry. Mean BL was 4.54 µg/dL (IQR 2.60-8.90 µg/dL). Mean supine and standing values of LF, HF and LF/HF were 50.5 and 21.1 nu and 2.63, and 59.7 and 10.9 nu and 6.31, respectively. Orthostatic stress decreased HF and increased LF (p<0.001). NCV averaged 3.74 m/s. Analyses across thirds of the BL distribution and multivariable-adjusted regression analyses failed to demonstrate any association of HRV or NCV with BL. At the exposure levels observed in our study, autonomous nervous activity and NCV were not associated with BL. NCT02243904

    Hall Effect and Resistivity in High-Tc Superconductors: The Conserving Approximation

    Full text link
    The Hall coefficient (R_H) of high-Tc cuprates in the normal state shows the striking non-Fermi liquid behavior: R_H follows a Curie-Weiss type temperature dependence, and |R_H|>>1/|ne| at low temperatures in the under-doped compounds. Moreover, R_H is positive for hole-doped compounds and is negative for electron-doped ones, although each of them has a similar hole-like Fermi surface. In this paper, we give the explanation of this long-standing problem from the standpoint of the nearly antiferromagnetic (AF) Fermi liquid. We consider seriously the vertex corrections for the current which are indispensable to satisfy the conservation laws, which are violated within the conventional Boltzmann transport approximation. The obtained total current J_k takes an enhanced value and is no more perpendicular to the Fermi surface due to the strong AF fluctuations. By virtue of this mechanism, the anomalous behavior of R_H in high-Tc cuprates is neutrally explained. We find that both the temperature and the (electron, or hole) doping dependences of R_H in high-T_c cuprates are reproduced well by numerical calculations based on the fluctuation-exchange (FLEX) approximation, applied to the single-band Hubbard model. We also discuss the temperature dependence of R_H in other nearly AF metals, e.g., V_2O_3, kappa-BEDT-TTF organic superconductors, and heavy fermion systems close to the AF phase boundary.Comment: 19 pages, to appear in Phys. Rev. B, No.59, Vol.22, 199

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS
    corecore