9 research outputs found

    Learning Semantic Textual Similarity via Topic-informed Discrete Latent Variables

    Full text link
    Recently, discrete latent variable models have received a surge of interest in both Natural Language Processing (NLP) and Computer Vision (CV), attributed to their comparable performance to the continuous counterparts in representation learning, while being more interpretable in their predictions. In this paper, we develop a topic-informed discrete latent variable model for semantic textual similarity, which learns a shared latent space for sentence-pair representation via vector quantization. Compared with previous models limited to local semantic contexts, our model can explore richer semantic information via topic modeling. We further boost the performance of semantic similarity by injecting the quantized representation into a transformer-based language model with a well-designed semantic-driven attention mechanism. We demonstrate, through extensive experiments across various English language datasets, that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.Comment: 12 pages, 6 figure

    Synthesis of an Eco-Friendly Xylooligosaccharides and Its Mechanistic Evaluation in Water-Based Drilling Fluids

    No full text
    This study investigates the preparation and application mechanism of Xylooligosaccharides (XOS), an environmentally friendly oligosaccharide additive derived from black fungus in water-based drilling fluids (WBFs). The distinctive molecular characteristics of XOS are revealed through Fourier-transform infrared spectroscopy. Thermogravimetric analysis confirms its stability at temperatures below 150 °C. In terms of performance enhancement, incorporating XOS improves rheological properties and filtration efficiency. Elevated XOS concentrations increase viscosity, diminish fluid loss, suppress clay hydration, and enhance cohesive strength, especially at higher temperatures. Additionally, incorporating XOS prompts the formation of a lubricating layer on particle surfaces, facilitating improved interaction between particles and the surrounding fluid. This layer substantially reduces friction coefficients, thereby significantly boosting the lubrication efficiency of the drilling fluid. At the microstructural level, the incorporation of XOS leads to noticeable microstructural refinement in the matrix mud cake, resulting in a smoother particle distribution due to interactions between XOS and particles. Mechanistically, introducing XOS results in a significant shift in the distribution of clay particle sizes. This phenomenon can be attributed to XOS’s ability to create a stable hydration film within the WBFs. As a result, this film mitigates particle aggregation, leading to a reduction in particle size. XOS emerges as a versatile and sustainable oligosaccharide inhibitor, effectively optimizing the performance of WBFs. Its diverse contributions to lubrication, inhibition, and microstructure refinement position XOS as a promising solution for efficiently extracting oil and gas resource

    Processing of Kansui Roots Stir-Baked with Vinegar Reduces Kansui-Induced Hepatocyte Cytotoxicity by Decreasing the Contents of Toxic Terpenoids and Regulating the Cell Apoptosis Pathway

    No full text
    Euphorbia kansui is a Traditional Chinese Medicine widely used for the treatment of oedema, ascites and asthma. However, its serious hepatotoxicity hinders its safe clinical application. The process of stir-baking with vinegar is regularly used to reduce the toxicity of kansui. Up till now, the exact mechanism of the reduction in hepatotoxicity of kansui stir-baked with vinegar has been poorly defined. In this study, decreased  contents of five diterpene and one triterpene in kansui (GS-1) after stir-baking with vinegar (GS-2) was investigated by UPLC-QTOF/MS. Flow cytometry and Hoechst staining were used to show that the stir-baking with vinegar process reduces kansui-induced cell apoptosis. Furthermore, the result also indicated that kansui stir-baked with vinegar protects LO2 cells from apoptosis by increasing the cell mitochondrial membrane potential (ΔΨm), decreasing the release of cytochrome c and inhibiting the activities of caspase-9 and caspase-3 as evidenced by means of high content screening (HCS), ELISA and western blotting. These results suggested that the stir-baking vinegar could reduce the hepatotoxicity of kansui by effectively decreasing the contents of toxic terpenoids and inhibiting the intrinsic pathway of hepatocyte cell apoptosis. In conclusion, the study provided significant data for promoting safer and better clinical use of this herb
    corecore