7 research outputs found
Recommended from our members
Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness
Objective: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction, and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques, and whether augmenting mitochondrial respiration affects atherogenesis.
Approach and Results: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells (VSMCs) derived from plaques showed impaired mitochondrial respiration, reduced complex I expression and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species (ROS). To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased VSMC mtDNA integrity and respiration. Twinkle also promoted VSMC proliferation and protected both VSMCs and macrophages from oxidative stress-induced apoptosis.
Conclusions: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decreases necrotic core and increases fibrous cap areas independently of changes in ROS, and may be a promising therapeutic strategy in atherosclerosis.This work was supported by British Heart Foundation (BHF) grants PG/14/69/31032 and RG/13/14/30314, a Wellcome Trust PhD Fellowship to J. Reinhold, the National Institute for Health Research Cambridge Biomedical Research Centre, the BHF Centre for Research Excellence, the Academy of Medical Sciences and by grants to M.P. Murphy from the Medical Research Council UK (MC_U105663142), and by a Wellcome Trust Investigator award (110159/Z/15/Z)
Treating cancer with selective CDK4/6 inhibitors.
Uncontrolled cellular proliferation, mediated by dysregulation of the cell-cycle machinery and activation of cyclin-dependent kinases (CDKs) to promote cell-cycle progression, lies at the heart of cancer as a pathological process. Clinical implementation of first-generation, nonselective CDK inhibitors, designed to inhibit this proliferation, was originally hampered by the high risk of toxicity and lack of efficacy noted with these agents. The emergence of a new generation of selective CDK4/6 inhibitors, including ribociclib, abemaciclib and palbociclib, has enabled tumour types in which CDK4/6 has a pivotal role in the G1-to-S-phase cell-cycle transition to be targeted with improved effectiveness, and fewer adverse effects. Results of pivotal phase III trials investigating palbociclib in patients with advanced-stage oestrogen receptor (ER)-positive breast cancer have demonstrated a substantial improvement in progression-free survival, with a well-tolerated toxicity profile. Mechanisms of acquired resistance to CDK4/6 inhibitors are beginning to emerge that, although unwelcome, might enable rational post-CDK4/6 inhibitor therapeutic strategies to be identified. Extending the use of CDK4/6 inhibitors beyond ER-positive breast cancer is challenging, and will likely require biomarkers that are predictive of a response, and the use of combination therapies in order to optimize CDK4/6 targeting