128 research outputs found

    AMPK Signaling in Energy Control, Cartilage Biology, and Osteoarthritis

    Get PDF
    The adenosine monophosphate (AMP)–activated protein kinase (AMPK) was initially identified as an enzyme acting as an “energy sensor” in maintaining energy homeostasis via serine/threonine phosphorylation when low cellular adenosine triphosphate (ATP) level was sensed. AMPK participates in catabolic and anabolic processes at the molecular and cellular levels and is involved in appetite-regulating circuit in the hypothalamus. AMPK signaling also modulates energy metabolism in organs such as adipose tissue, brain, muscle, and heart, which are highly dependent on energy consumption via adjusting the AMP/ADP:ATP ratio. In clinics, biguanides and thiazolidinediones are prescribed to patients with metabolic disorders through activating AMPK signaling and inhibiting complex I in the mitochondria, leading to a reduction in mitochondrial respiration and elevated ATP production. The role of AMPK in mediating skeletal development and related diseases remains obscure. In this review, in addition to discuss the emerging advances of AMPK studies in energy control, we will also illustrate current discoveries of AMPK in chondrocyte homeostasis, osteoarthritis (OA) development, and the signaling interaction of AMPK with other pathways, such as mTOR (mechanistic target of rapamycin), Wnt, and NF-ÎșB (nuclear factor ÎșB) under OA condition

    Optimization of gas-filled quartz capillary discharge waveguide for high-energy laser wakefield acceleration

    Get PDF
    A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to similar to 7.5-14.7 Torr and decreasing the discharge current to similar to 70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide

    Late Neo-Proterozoic Tectono-Sedimentary Evolution of the Tarim Block, NW China

    Get PDF
    The study of the late Neo-Proterozoic tectono-sedimentary evolution of the Tarim Basin is a key to unravel the tectonic setting, the intracontinental rift formation mechanism, and the sedimentary filling processes of this basin. Since in the Tarim Basin, the late Neo-Proterozoic to early Cambrian sedimentary successions were preserved, this basin represents an excellent site in order to study the Precambrian geology. Based on the outcrop data collected in the peripheral areas of the Tarim Basin, coupled with the intra-basinal drill sites and seismic data previously published, the late Neo-proterozoic tectono-sedimentary evolution of the Tarim Basin has been investigated. These data show that there were two individual blocks before the Cryogenian Period, namely, the north Tarim Block and the south Tarim Block. In the early Neo-Proterozoic (ca. 800 Ma), the amalgamation of two blocks resulted in the formation of the unified basement. During the late Neo-Proterozoic, the Tarim Block was in an extensional setting as a result of the Rodinia supercontinent breakup and then evolved into an intracontinental rift basin. The tectono-sedimentary evolution of the basin may be divided into three stages: the rifting stage (780–700 Ma), the rifting to depression transitional stage (660–600 Ma), and the post-rift depression stage (580–540 Ma). In the rifting stage, intracontinental rifts (i.e., the Awati Rift, the North Manjar Rift, and the South Manjar Rift) were formed, in which coarse-grained clastic sediments were deposited, generally accompanied by a massive volcanic activity due to an intensive stretching. In the rifting-depression transitional stage and in the post-rift depression stage, the paleogeography was characterized by uplifts to the south and depressions to the north. Three types of depositional association (i.e., clastic depositional association, clastic-carbonate mixed depositional association, and carbonate depositional association) were formed. The distribution of the lower Cambrian source rock was genetically related to the tectono-sedimentary evolution during the late Neo-Proterozoic. The lower Cambrian source rock was a stable deposit in the northern Tarim Basin, where the late Ediacaran carbonate was deposited, thinning out toward the central uplift. It was distributed throughout the entire Mangar region in the east and may be missing in the Magaiti and the southwestern Tarim Basin

    Ultralow-emittance measurement of high-quality electron beams from a laser wakefield accelerator

    Get PDF
    By designing a cascaded laser wakefield accelerator, high-quality monoenergetic electron beams (e beams) with peak energies of 340–360MeV and rms divergence of <0.3 mrad were produced. Based on this accelerator, the e-beam betatron radiation spectra were measured exactly via the single-photon counting technique to diagnose the e-beam transverse emittance in a single shot. The e-beam transverse size in the wakefield was estimated to be ~0.35 lm by comparing the measured X-ray spectra with the analytical model of synchrotron-like radiation. By combining the measured e-beam energy and divergence, the normalized transverse emittance was estimated to be as low as 56 um mrad and consistent with particle-in-cell simulations. These high-energy ultralow-emittance e beams hold great potential applications in developing free electron lasers and high-energy X-ray and gamma ray sources

    Piezoresistivity Characterization of Synthetic Silicon Nanowires Using a MEMS Device

    Full text link

    Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front

    Get PDF
    We have experimentally realized a scheme to enhance betatron radiation by manipulating transverse oscillation of electrons in a laser-driven plasma wakefield with a tilted shock front (TSF). Very brilliant betatron x-rays have been produced with significant enhancement both in photon yield and peak energy but almost maintain the e-beam energy spread and charge. Particle-in-cell simulations indicate that the accelerated electron beam (e beam) can acquire a very large transverse oscillation amplitude with an increase in more than 10-fold, after being steered into the deflected wakefield due to the refraction of the driving laser at the TSF. Spectral broadening of betatron radiation can be suppressed owing to the small variation in the peak energy of the low-energy-spread e beam in a plasma wiggler regime. It is demonstrated that the e-beam generation, refracting, and wiggling can act as a whole to realize the concurrence of monoenergetic e beams and bright x-rays in a compact laser-wakefield accelerator

    Significantly improved high-temperature energy storage performance of commercial BOPP films by utilizing ultraviolet grafting modification

    Get PDF
    Commercial biaxially oriented polypropylene (BOPP) film capacitors have been widely applied in the fields of electrical and electronic engineering. However, due to the sharp increase in electrical conduction loss as the temperature rises, the energy storage performance of BOPP films seriously degrades at elevated temperatures. In this study, the grafting modification method is facile and suitable for large-scale industrial manufacturing and has been proposed to increase the high-temperature energy storage performance of commercial BOPP films for the first time. Specifically, acrylic acid (AA) as a polar organic molecular is used to graft onto the surface of commercial BOPP films by using ultraviolet irradiation (abbreviated as BOPP−AA). The results demonstrate that the AA grafting modification not only slightly increases the dielectric constant, but also significantly reduces the leakage current density at high-temperature, greatly improving the high-temperature energy storage performance. The modified BOPP−AA films display a discharged energy density of 1.32 J/cm3 with an efficiency of >90% at 370 kV/mm and 125 °C, which is 474% higher than that of the pristine BOPP films. This work manifests that utilizing ultraviolet grafting modification is a very efficient way to improve the high-temperature energy storage performance of commercial BOPP films as well as provides a hitherto unexplored opportunity for large-scalable production applications

    Faraday-rotation self-interference method for electron beam duration measurement in the laser wakefield accelerator

    Get PDF
    Real-time single-shot measurement of the femtosecond electron beam duration in laser wakefield accelerators is discussed for both experimental design and theoretical analysis that combines polarimetry and interferometry. The probe pulse polarization is rotated by the azimuthal magnetic field of the electron beam and then introduced into a Michelson-type interferometer for self-interference. The electron beam duration is obtained from the region size of the interference fringes, which is independent of the pulse width of the probe laser. Using a larger magnification system or incident angle, the measurement resolution can be less than 1 fs

    Hybrid capillary discharge waveguide for laser wakefield acceleration

    Get PDF
    A hybrid capillary discharge waveguide formed by injecting low-pressure hydrogen (< 3.8 Torr) into a pure ablative capillary is presented to supply the stable guiding for multi-GeV laser wakefield acceleration. The injected low-pressure gas only provides the seed plasma for ablative discharge breakdown, like the adsorbed gas in the inner wall of the ablative capillary. With this hybrid capillary, a stable discharge with low jitter (~ 5 ns) can be achieved in a simple way, and the plasma density inside can also be controlled in a range of ~0.7 x 1018cm-3-1.2 x 1018cm-3 within a 150-ns plasma channel temporal window. Furthermore, the hybrid capillary can also be easily extended to a longer length by adding multiple segments, and femtosecond laser pulses can be well guided both in the single and multiple segments mode. With these advantages, the hybrid capillary may provide an attractive plasma channel for multi-GeV-scale laser wakefield acceleration
    • 

    corecore