96 research outputs found

    Long Noncoding RNA HOTTIP Promotes Mouse Hepatic Stellate Cell Activation via Downregulating miR-148a

    Get PDF
    Background/Aims: HOTTIP is a critical modulator in human diseases including liver cancer, but its role and molecular biological mechanisms in liver fibrosis are still unclear. Methods: The expression profile of HOTTIP during the progression of liver fibrosis was detected in human liver samples and in CCl4-treated mice using qRT-PCR. The expressing sh-HOTTIP adenoviral vector was used to reduce HOTTIP levels in vivo. Dual-Luciferase Reporter Assay was performed to validate the interaction between miR-148a and HOTTIP, TGFBR1, or TGFBR2. Results: HOTTIP expressions in fibrotic liver samples and cirrhotic liver samples were significantly upregulated compared with healthy liver controls, and cirrhotic samples exhibited the highest levels of HOTTIP. Moreover, HOTTIP expressions were substantially induced in the liver tissues and hepatic stellate cells (HSC) of CCl4-treated mice. Ad-shHOTTIP delivery could alleviate CCl4- induced liver fibrosis in mice. Down-regulation of HOTTIP inhibited the viability and activation of HSCs in vitro, and HOTTIP negatively regulated miR-148a expression in HSCs. miR-148a had a negative effect on HSC activation by targeting TGFBR1 and TGFBR2. Conclusion: HOTTIP is involved in the progression of liver fibrosis by promoting HSC activation. The high level of HOTTIP downregulates miR-148a, thus to increase the level of TGFBR1 and TGFBR2 and contribute to liver fibrosis

    Gut Microbiome Characteristics in feral and domesticated horses from different geographic locations

    Get PDF
    Domesticated horses live under different conditions compared with their extinct wild ancestors. While housed, medicated, and kept on a restricted source of feed, the microbiota of domesticated horses is hypothesized to be altered. We assessed the fecal microbiome of 57 domestic and feral horses from different locations on three continents, observing geographical differences. A higher abundance of Eukaryota (p p p p </p

    Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China

    No full text
    This paper introduces a method to study the origin of geothermal water by analysis of hydrochemistry and isotopes. In addition, the genetic mechanism of geothermal water (GTW) is revealed. The study of the origin of geothermal water is useful for the sustainability of geothermal use. As an example, Tangquan is abundant in GTW resources. Elucidating the recharge sources and formation mechanism of the GTW in this area is vitally important for its scientific development. In this study, the GTW in Tangquan was systematically investigated using hydrochemical and isotopic geochemical analysis methods. The results show the following. The GTW and shallow cold water in the study area differ significantly in their hydrochemical compositions. The geothermal reservoir has a temperature ranging from 63 to 75 °C. The GTW circulates at depths of 1.8–2.3 km. The GTW is recharged by the infiltration of meteoric water at elevations of 321–539 m and has a circulation period of approximately 2046–6474 years. The GTW becomes mixed with the shallow cold karst water at a ratio of approximately 4–26% (cold water) during the upwelling process. In terms of the cause of its formation, the geothermal system in the study area is, according to analysis, of the low-medium-temperature convective type. This geothermal system is predominantly recharged by precipitation that falls in the outcropping carbonate area within the Laoshan complex anticline and is heated by the terrestrial heat flow in the area. The geothermal reservoir is composed primarily of Upper Sinian dolomite formations, and its caprock is made up of Cambrian, Cretaceous, and Quaternary formations. Through deep circulation, the GTW migrates upward along channels formed from the convergence of northeast–east- and north–west-trending faults and is mixed with the shallow cold water, leading to geothermal anomalies in the area

    Numerical Simulation of Artificial Recharge Groundwater Effect on Overlying Soft Clay Compression Control

    No full text
    Soil deformation is prone to occur in the process of the foundation pit dewatering. A large number of metro existing tunnels are located in soft soil layers. The compression of soft soil poses a threat to metro existing tunnels. Previously, plenty of research on foundation pit dewatering is focused on the hydraulic head and deformation characteristics of the aquifer. However, the law of water releasing and compression deformation of overlying soft soil has not been taken seriously. In order to study the artificial recharge groundwater effect on overlying soft clay, a three-dimensional seepage–soil deformation coupling numerical model was established. The theoretical basis of the model is Darcy’s law and the principle of effective stress. A foundation pit located in Nanjing, China was selected as an example. The numerical model was used to simulate the hydraulic head and soil deformation caused by foundation pit dewatering and artificial recharge groundwater outside. The result shows that, due to the difference of hydraulic head between the aquifer and the aquitard reducing, it also has a good control effect on the deformation of the soft soil by recharging water into the aquifer. The location of recharge wells around the metro existing tunnel can control the soil deformation effectively, which could help to reduce the impact on the metro existing tunnel

    miR-96 exerts carcinogenic effect by activating AKT/GSK-3β/β-catenin signaling pathway through targeting inhibition of FOXO1 in hepatocellular carcinoma

    No full text
    Abstract Background The aim of this research was to investigate the mechanism of miR-96 affecting hepatocellular carcinoma (HCC). Methods mRNA and protein expression was detected by qRT-PCR and Western blot, respectively. HepG2 cells were transfected and grouped as follows: miR-NC group, miR-mimics group, NC + Vector group, mimics + Vector group, mimics + FOXO1 group. Luciferase reporter assay was performed. MTT and Transwell assay was conducted. In vivo studies by nude mice were performed. Immunohistochemistry and immunofluorescence was executed. Results Up-regulated miR-96 and down-regulated FOXO1 was found in tumor tissues and HepG2 cells (P < 0.01). FOXO1 was directly suppressed by miR-96. Compared with NC + Vector group, mimics + Vector group has higher OD495 value (P < 0.05), higher migration and invasion cells (P < 0.01), larger transplanted tumor volume (P < 0.01), lower FOXO1 positive cell numbers (P < 0.01), higher p-AKT and p-GSK-3β expression (P < 0.01), lower p-β-catenin expression (P < 0.01), more β-catenin expression in the nucleus (P < 0.01). Compared with mimics + Vector group, mimics + FOXO1 group has lower OD495 value (P < 0.05), lower migration and invasion cells (P < 0.01), smaller transplanted tumor volume (P < 0.01), higher FOXO1 positive cells (P < 0.01), lower p-AKT and p-GSK-3β expression (P < 0.01), higher p-β-catenin expression (P < 0.01), less β-catenin expression in the nucleus (P < 0.01). Conclusion miR-96 exerts carcinogenic effect by activating AKT/GSK-3β/β-catenin signaling pathway through targeting inhibition of FOXO1 in HCC

    Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma

    No full text
    Overexpression and/or hyperactivation of cyclin-dependent kinase 4 (CDK4) has been found in many types of human cancers, and a CDK4 specific inhibitor, palbociclib, has been recently approved by the FDA for the treatment of breast cancer. However, the expression and the therapeutic potential of CDK4 in osteosarcoma remain unclear. In the present study, CDK4 was found to be highly expressed in human osteosarcoma tissues and cell lines as compared with normal human osteoblasts. Elevated CDK4 expression correlated with metastasis potential and poor prognosis in osteosarcoma patients as determined by immunohistochemical analysis in a human osteosarcoma tissue microarray (TMA). CDK4 inhibition by either palbociclib or specific small interference RNA (siRNA) exhibited dose-dependent inhibition of osteosarcoma cell proliferation and growth, accompanied by suppression of the CDK4/6-cyclinD-Rb signaling pathway. Flow cytometry analysis showed that CDK4 knockdown arrested osteosarcoma cells in the G1 phase of the cell cycle and induced cell apoptosis. Furthermore, inhibition of CDK4 significantly decreased osteosarcoma cell migration in vitro determined by the wound healing assay. These data highlight that CDK4 may be a potential promising therapeutic target in the treatment of human osteosarcoma
    • …
    corecore