50 research outputs found

    H2S gas sensing performance and mechanisms using CuO-Al2O3 composite films based on both surface acoustic wave and chemiresistor techniques

    Get PDF
    Surface acoustic wave and chemiresistor based gas sensors integrated with a sensing layer of sol-gel CuO-Al2O3 composite film were fabricated and their performance and mechanisms for H2S sensing were characterized and compared. In the composite film, CuO nanoparticles provide active sites for adsorption and reaction of H2S molecules while Al2O3 nanoparticles help to form a uniform and mesoporous film structure, both of which enhance the sensitivity of the sensors by providing numerous active CuO surfaces. Through the comparative studies, the SAW based H2S sensor operated at room temperature showed a lower detection limit, higher sensitivity, better linearity and good selectivity to H2S gas with its concentration ranging from 5 ppb to 100 ppm, compared with those of the chemiresistor sensor, which are mainly attributed to the effective mass sensing properties of the SAW sensor, because a minor change in the mass of the film caused by adsorbed H2S molecules would lead to a significant and monotonous change of the resonant frequency of the SAW devices

    Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China

    Get PDF
    Pollution load and contamination levels of phthalate esters (PAEs) in agricultural soils throughout China were studied in this work. The usage amount and residual rates of plastic film were the main factors explaining the variation among regions and leading to higher pollution load and contamination levels in agricultural big provinces. However, higher pollution loads and contamination levels frequently occurred under non-recycling than recycling scenarios during calculation. Extremely high loads (more than 10 kg/ha/year) of PAEs were estimated in five areas including Beijing city, Tibet, Liaoning Province, Jilin Province and Fujian Province and the high contamination levels in agricultural soil were presented in these places with more than 4.0 mg/kg under non-recycling scenarios. The predicted concentrations of PAEs in soils exceed the target value for soils from Netherlands (I PAEs pound = 0.1 mg/kg), indicating very high contamination of most Chinese agricultural soils. Significant differences in estimation results after plastic film utilization suggest that decreasing plastic film residue after application is an effective measure to control PAE pollution in soils. However, the comparison between contamination levels of PAEs estimated by the model and the previous detections of PAEs pollution levels in agricultural soils showed that there were presented wide range of PAE sources indicated to agricultural soils.Pollution load and contamination levels of phthalate esters (PAEs) in agricultural soils throughout China were studied in this work. The usage amount and residual rates of plastic film were the main factors explaining the variation among regions and leading to higher pollution load and contamination levels in agricultural big provinces. However, higher pollution loads and contamination levels frequently occurred under non-recycling than recycling scenarios during calculation. Extremely high loads (more than 10 kg/ha/year) of PAEs were estimated in five areas including Beijing city, Tibet, Liaoning Province, Jilin Province and Fujian Province and the high contamination levels in agricultural soil were presented in these places with more than 4.0 mg/kg under non-recycling scenarios. The predicted concentrations of PAEs in soils exceed the target value for soils from Netherlands (I PAEs pound = 0.1 mg/kg), indicating very high contamination of most Chinese agricultural soils. Significant differences in estimation results after plastic film utilization suggest that decreasing plastic film residue after application is an effective measure to control PAE pollution in soils. However, the comparison between contamination levels of PAEs estimated by the model and the previous detections of PAEs pollution levels in agricultural soils showed that there were presented wide range of PAE sources indicated to agricultural soils

    Review on dating of uranium mineralization

    No full text
    The accurate and precise ages of uranium mineralization are scarce because those uranium minerals (pitchblendes) usually show heterogeneous and fine grains in component and structure, and may have formed in several stages. The conventional bulk uranium minerals (pitchblendes) U-Pb dating methods previously employed were unable to avoid alteration minerals and precisely discriminate different stages of uranium mineralization to obtain the precise ore-forming ages. With the constant improvement and development of analytical techniques, ore-forming age of uranium mineralization has been extensively studied. However, the insufficient understanding on constraint for uranium mineral U-Pb dating techniques, and uranium mineral requirement for U-Pb dating systems commonly resulted in that either the obtained ages were geological meaningless or the isochron ages were failure to be constructed. This paper presents the development process of analysis methods for ore-forming ages of uranium mineralization in detail. These main dating methods include: (1) uranium mineral U-Th-Pb chemical age; (2) uranium mineral U-Pb model age; (3) conventional uranium mineral U-Pb isochron age; (4) uranium mineral associated with other minerals dating; and (5) in-situ uranium mineral U-Pb dating. Additionally, we also review these issues on various dating techniques of uranium mineralization and propose some items for future development of metallogenic geochronology on uranium deposit

    REE Characteristics of a New Uranium Mineral from the Xianshi Uranium Deposit, South China

    No full text

    Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode

    No full text
    Prussian blue attracts the attention of many researchers as a promising candidate for use in sodium-ion battery cathodes due to its open frameworks and high working potential. However, the interstitial water in its crystal structure and its poor electronic conductivity limits its performance in practical sodium-ion batteries. Here, acid-assisted ball milling synthesis was employed as a versatile method for the production of surface-modified Prussian blue. With (CH3COO)2Fe being used as the raw material, the Prussian blue produced using ball milling synthesis was modified by the carboxyl functional group on its surface, which resulted in lower interstitial water content and enhanced electrochemical cycling performance. In addition, ball milling synthesis provided the as-prepared Prussian blue with a large surface area, improving its electrochemical rate performance. When used as the cathode of sodium-ion batteries, as-prepared Prussian blue delivered a specific capacity of 145.3 mAh g−1 at 0.2 C and 113.7 mAh g−1 at 1 C, maintaining 54.5% of the initial capacity after 1000 cycles at 1 C (1 C = 170 mA g−1). Furthermore, a solid-state sodium-ion battery was mounted, with as-prepared Prussian blue being employed as the cathode and Na metal as the anode, which delivered a high specific capacity of 128.7 mAh g−1 at 0.2 C. The present study put forward an effective solution to overcome the limitations of Prussian blue for its commercial application

    Revitalizing CNN attentions via transformers in self-supervised visual representation learning

    Get PDF
    Studies on self-supervised visual representation learning (SSL) improve encoder backbones to discriminate training samples without labels. While CNN encoders via SSL achieve comparable recognition performance to those via supervised learning, their network attention is under-explored for further improvement. Motivated by the transformers that explore visual attention effectively in recognition scenarios, we propose a CNN Attention REvitalization (CARE) framework to train attentive CNN encoders guided by transformers in SSL. The proposed CARE framework consists of a CNN stream (C-stream) and a transformer stream (T-stream), where each stream contains two branches. C-stream follows an existing SSL framework with two CNN encoders, two projectors, and a predictor. T-stream contains two transformers, two projectors, and a predictor. T-stream connects to CNN encoders and is in parallel to the remaining C-Stream. During training, we perform SSL in both streams simultaneously and use the T-stream output to supervise C-stream. The features from CNN encoders are modulated in T-stream for visual attention enhancement and become suitable for the SSL scenario. We use these modulated features to supervise C-stream for learning attentive CNN encoders. To this end, we revitalize CNN attention by using transformers as guidance. Experiments on several standard visual recognition benchmarks, including image classification, object detection, and semantic segmentation, show that the proposed CARE framework improves CNN encoder backbones to the state-of-the-art performance.Comment: Accepted by NeurIPS 202

    Diagnosis of Water-Influx Locations of Horizontal Well Subject to Bottom-Water Drive through Well-Testing Analysis

    No full text
    Horizontal well (HW) has been widely applied to enhance well productivity and prevent water coning in the anisotropic reservoir subject to bottom-water drive. However, the water-cut increases quickly after only one or two years’ production in China while oil recovery still keeps at a very low level. It becomes a major challenge to effectively estimate production distribution and diagnose water-influx locations. Ignoring the effect of nonuniform production distribution along wellbore on pressure response may cause erroneous results especially for water-influx location determination. This paper developed an analytical method to determine nonuniform production distribution and estimate water-influx sections through well-testing analysis. Each HW is divided into multiple producing segments (PS) with variable parameters (e.g., location, production, length, and skin factor) in this model. By using Green’s functions and the Newman-product method, the novel transient pressure solutions of an HW can be obtained in the anisotropic reservoir with bottom-water drive. Secondly, the influences of nonuniform production-distribution on type curves are investigated by comparing the multisegment model (MSM) with the whole-segment model (WSM). Results indicate that the method proposed in this paper enables petroleum operators to interpret parameters of reservoir and HW more accurately by using well-testing interpretation on the basis of bottom-hole pressure data and further estimate water-influx sections and nonproducing segments. Additionally, relevant measures can be conducted to enhance oil production, such as water controlling for water-breakthrough segments and stimulation treatments for nonproducing locations
    corecore