7,269 research outputs found
Concurrent -vector fields and energy beta-change
The present paper deals with an \emph{intrinsic} investigation of the notion
of a concurrent -vector field on the pullback bundle of a Finsler manifold
. The effect of the existence of a concurrent -vector field on some
important special Finsler spaces is studied. An intrinsic investigation of a
particular -change, namely the energy -change
($\widetilde{L}^{2}(x,y)=L^{2}(x,y)+ B^{2}(x,y) with \
B:=g(\bar{\zeta},\bar{\eta})\bar{\zeta} \pi\Gamma\widetilde{\Gamma}\beta$-change of the fundamental linear connection in Finsler geometry: the
Cartan connection, the Berwald connection, the Chern connection and the
Hashiguchi connection. Moreover, the change of their curvature tensors is
concluded.
It should be pointed out that the present work is formulated in a prospective
modern coordinate-free form.Comment: 27 pages, LaTex file, Some typographical errors corrected, Some
formulas simpifie
Quantum Mechanics as Complex Probability Theory
Realistic quantum mechanics based on complex probability theory is shown to
have a frequency interpretation, to coexist with Bell's theorem, to be linear,
to include wavefunctions which are expansions in eigenfunctions of Hermitian
operators and to describe both pure and mixed systems. Illustrative examples
are given. The quantum version of Bayesian inference is discussed. Postscript
version of hep-th/9307019.Comment: 15FSU-SCRI-93-7
Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations
We construct a new framework for accelerating Markov chain Monte Carlo in
posterior sampling problems where standard methods are limited by the
computational cost of the likelihood, or of numerical models embedded therein.
Our approach introduces local approximations of these models into the
Metropolis-Hastings kernel, borrowing ideas from deterministic approximation
theory, optimization, and experimental design. Previous efforts at integrating
approximate models into inference typically sacrifice either the sampler's
exactness or efficiency; our work seeks to address these limitations by
exploiting useful convergence characteristics of local approximations. We prove
the ergodicity of our approximate Markov chain, showing that it samples
asymptotically from the \emph{exact} posterior distribution of interest. We
describe variations of the algorithm that employ either local polynomial
approximations or local Gaussian process regressors. Our theoretical results
reinforce the key observation underlying this paper: when the likelihood has
some \emph{local} regularity, the number of model evaluations per MCMC step can
be greatly reduced without biasing the Monte Carlo average. Numerical
experiments demonstrate multiple order-of-magnitude reductions in the number of
forward model evaluations used in representative ODE and PDE inference
problems, with both synthetic and real data.Comment: A major update of the theory and example
- …