2 research outputs found

    Study of Two Layered Immiscible Fluids Flow in a Channel with Obstacle by Using Lattice Boltzmann RK Color Gradient Model

    No full text
    Lattice Boltzmann method (LBM) is employed in the current work to simulate two-phase flows of immiscible fluids over a square obstacle in a 2D computational domain using the Rothman-Keller color gradient model. This model is based on the multiphase Rothman-Keller description, it is used to separate two fluids in flow and to assess its efficacy when treating two fluids in flow over a square obstacle with the objective of reducing turbulence by adjusting the viscosities of the two fluids. This turbulence can cause major problems such as interface tracking techniques in gas-liquid flow and upward or downward co-current flows in pipes. So, the purpose of the study is to replace a single fluid with two fluids of different viscosities by varying these viscosities in order to reduce or completely eliminate the turbulence. The results show that to have stable, parallel and non-overlapping flows behind the obstacle, it is necessary that the difference between the viscosities of the fluids be significant. Also, showing that the increase in the viscosity ratio decreases the time corresponding to the disappearance of the vortices behind the obstacle. The results presented in this work have some general conclusions: For M≥2, the increase in the viscosity difference leads to an increasing of friction between fluids, reducing of average velocity of flow and decreasing the time corresponding to the disappearance of the vortices behind the obstacle. However, for M≤1/2, the opposite occurs

    Effect of a Detached Bi-Partition on the Drag Reduction for Flow Past a Square Cylinder

    No full text
    The objective of this research is to study the fluid flow control allowing the reduction of aerodynamic drag around a square cylinder using two parallel partitions placed downstream of the cylinder using the lattice Boltzmann method with multiple relaxation times (MRT-LBM). In contrast to several existing investigations in the literature that study either the effect of position or the effect of length of a single horizontal or vertical plate, this work presents a numerical study on the effect of Reynolds number (Re), horizontal position (g), vertical position (a), and length (Lp) of the two control partitions. Therefore, this work will be considered as an assembly of several results presented in a single work. Indeed, the Reynolds numbers are selected from 20 to 300, the gap spacing (0 ≤ g ≤ 13), the vertical positions (0 ≤ a ≤ 0.8d), and the lengths of partitions (1d ≤  Lp ≤  5d). To identify the different changes appearing in the flow and forces, we have conducted in this study a detailed analysis of velocity contours, lift and drag coefficients, and the root-mean-square value of the lift coefficient. The obtained results revealed three different flow regimes as the gap spacing was varied. Namely, the extended body regime for 0 ≤ g ≤ 3.9, the attachment flow regime for 4 ≤ g ≤ 5.5, and the completely developed flow regime for 6 ≤ g ≤ 13. A maximal percentage reduction in drag coefficient equal to 12.5%, is given at the critical gap spacing (gcr = 3.9). Also, at the length of the critical partition (Lpcr = 3d), a Cd reduction percentage of 12.95% was found in comparison with the case without control. Moreover, the position of the optimal partition was found to be equal to 0.8d i.e. one is placed on the top edge of the square cylinder and the second one is placed on the bottom edge. The maximum value of the lift coefficient is reached for a plate length Lp = 2d when the plates are placed at a distance g = 4. On the other hand, this coefficient has almost the same mean value for all spacings between the two plates. Similarly, the root means the square value of the lift coefficient (Clrms) admits zero values for low Reynolds numbers and then increases slightly until it reaches its maximum for Re = 300
    corecore