7 research outputs found

    ANN-based prediction of cementation factor in carbonate reservoir

    No full text
    Since carbonate reservoirs are a heterogeneous in nature, therefore the behaviour of petrophysical properties of these reservoirs is a highly nonlinear. There is no close conventional statistical model can describe the behaviour of the relation between cementation factor and rock properties. Artificial Neural Network technique is used in many applications to predict variable that usually cannot be measured in linear modelling. Depending on well logs data, the Interactive Petrophysics software had been used to calculate the petrophysical properties of studied oilfield. In this study, the data sets used for training and testing neural network are provided from well number three of Nasiriya oilfield in the south of Iraq. The neural network model was trained using two different training algorithms; Gradient Descent with Momentum and Levenberg - Marquardt. Porosity, permeability and resistivity formation factor relationships to cementation factor are proposed using artificial neural network model. An efficient performance of excellent prediction of cementation factor has been obtained with less than (1*10-4) mean square error (MSE)

    Optimized Artificial Intelligence Model for DDoS Detection in SDN Environment

    No full text
    Distributed denial of service (DDoS) attacks continue to be a major security concern, threatening the availability and reliability of network services. Software-defined networking (SDN) has emerged as a promising solution to address this issue, enabling centralized network control and management. However, conventional SDN-based DDoS mitigation techniques often struggle to detect and mitigate sophisticated attacks due to their limited ability to analyze complex traffic patterns. This paper proposes an innovative and optimized approach that effectively combines mininet, Ryu controller, and one dimensional-convolutional neural network (1D-CNN) to detect and mitigate DDoS attacks in SDN environments. The proposed approach involves training the 1D-CNN model with labeled network traffic data to effectively identify abnormal patterns associated with DDoS attacks. Furthermore, seven hyperparameters of the trained 1D-CNN model were tuned using non-dominated sorting genetic algorithm II (NSGA-II) to achieve the best accuracy with minimum training time. Once the optimized 1D-CNN model detects an attack, the Ryu controller dynamically adapts the network policies and employs appropriate mitigation techniques to protect the network infrastructure. To evaluate the effectiveness of the optimized 1D-CNN model, extensive experiments were conducted using a simulated SDN environment with a realistic DDoS attack dataset. The experimental results demonstrate that the developed approach achieves significantly improved detection accuracy of 99.99% compared to other machine learning (ML) models. The NSGA-II enhances the optimized model accuracy with an improvement rate of 9.5%, 8%, 5.4%, and 2.6% when it is compared to logistic regression (LR), random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN) optimized models respectively. This research paves the way for future developments in leveraging deep learning (DL) driven techniques and SDN architectures to address evolving cybersecurity challenges

    Direct contact evaporation of a single two-phase bubble in a flowing immiscible liquid medium. Part I: two-phase bubble size

    No full text
    The evaporation of a single n-pentane drop in another warm flowing liquid (water) medium has been studied experimentally. A Perspex column with an internal diameter of 10 cm and height of 150 cm was used throughout the experiments. N-pentane liquid at its saturation temperature and warm flowing water with flow rate of 10, 20, 30 and 40 L/h were employed as the dispersed and continuous phases, respectively. The active height of the continuous phase in the column (i.e. the level of the continuous phase in the column) covered only 100 cm of the columnā€™s height. A Photron FASTCAM high-speed camera (~ 65,000 f/s) was used to film the evaporation of the drop, while AutoCAD was used to analyse the images from the camera. The diameter ratio (diameter of growing two-phase bubble to initial drop diameter) of the two-phase bubble formed because of the evaporation of the pentane drop in direct contact with the water was measured. Also, the vaporisation ratio (x), the open angle of vapour (Ī²), the total height for complete evaporation and the total evaporation time were measured. The effects of the continuous phase flow rate and the temperature difference between the contacting phases, in terms of Jakob number (Ja), on the measured parameters were investigated. Furthermore, a statistical model to fit the experimental data was developed. The experimental results showed that the diameter of the two-phase bubble is strongly influenced by varying the continuous phase flow rate. The final size of the evaporated vapour bubble was unaffected by the flow rate of the continuous phase, while both the total height required for complete evaporation and hence the time required was significantly influenced. A similar impact was observed for the vaporisation ratio and the open angle of vapour
    corecore