72 research outputs found

    Corticospinal Tract (CST) reconstruction based on fiber orientation distributions(FODs) tractography

    Full text link
    The Corticospinal Tract (CST) is a part of pyramidal tract (PT), and it can innervate the voluntary movement of skeletal muscle through spinal interneurons (the 4th layer of the Rexed gray board layers), and anterior horn motorneurons (which control trunk and proximal limb muscles). Spinal cord injury (SCI) is a highly disabling disease often caused by traffic accidents. The recovery of CST and the functional reconstruction of spinal anterior horn motor neurons play an essential role in the treatment of SCI. However, the localization and reconstruction of CST are still challenging issues; the accuracy of the geometric reconstruction can directly affect the results of the surgery. The main contribution of this paper is the reconstruction of the CST based on the fiber orientation distributions (FODs) tractography. Differing from tensor-based tractography in which the primary direction is a determined orientation, the direction of FODs tractography is determined by the probability. The spherical harmonics (SPHARM) can be used to approximate the efficiency of FODs tractography. We manually delineate the three ROIs (the posterior limb of the internal capsule, the cerebral peduncle, and the anterior pontine area) by the ITK-SNAP software, and use the pipeline software to reconstruct both the left and right sides of the CST fibers. Our results demonstrate that FOD-based tractography can show more and correct anatomical CST fiber bundles

    Complex Image Generation SwinTransformer Network for Audio Denoising

    Full text link
    Achieving high-performance audio denoising is still a challenging task in real-world applications. Existing time-frequency methods often ignore the quality of generated frequency domain images. This paper converts the audio denoising problem into an image generation task. We first develop a complex image generation SwinTransformer network to capture more information from the complex Fourier domain. We then impose structure similarity and detailed loss functions to generate high-quality images and develop an SDR loss to minimize the difference between denoised and clean audios. Extensive experiments on two benchmark datasets demonstrate that our proposed model is better than state-of-the-art methods

    Deep Feature Registration for Unsupervised Domain Adaptation

    Full text link
    While unsupervised domain adaptation has been explored to leverage the knowledge from a labeled source domain to an unlabeled target domain, existing methods focus on the distribution alignment between two domains. However, how to better align source and target features is not well addressed. In this paper, we propose a deep feature registration (DFR) model to generate registered features that maintain domain invariant features and simultaneously minimize the domain-dissimilarity of registered features and target features via histogram matching. We further employ a pseudo label refinement process, which considers both probabilistic soft selection and center-based hard selection to improve the quality of pseudo labels in the target domain. Extensive experiments on multiple UDA benchmarks demonstrate the effectiveness of our DFR model, resulting in new state-of-the-art performance

    LaksNet: an end-to-end deep learning model for self-driving cars in Udacity simulator

    Full text link
    The majority of road accidents occur because of human errors, including distraction, recklessness, and drunken driving. One of the effective ways to overcome this dangerous situation is by implementing self-driving technologies in vehicles. In this paper, we focus on building an efficient deep-learning model for self-driving cars. We propose a new and effective convolutional neural network model called `LaksNet' consisting of four convolutional layers and two fully connected layers. We conduct extensive experiments using our LaksNet model with the training data generated from the Udacity simulator. Our model outperforms many existing pre-trained ImageNet and NVIDIA models in terms of the duration of the car for which it drives without going off the track on the simulator
    • …
    corecore