1,609 research outputs found
Prevalence of prolonged QTcinterval in electrocardiograms of 1 -12 year-old seizure patients
Background: Children with long QT intervals are prone to life-threatening ventricular arrhythmias which may lead to seizure and syncope and may be misdiagnosed as seizure. Objective: This study aimed to assess the frequency of long QT intervals in children with and without convulsion. Method: This study is case-control. ECG tracings were requested for all children aged between one to twelve years who were hospitalized due to convulsion with no underlying etiology and simultaneously for children of the same age and gender who were admitted due to other than seizure as case group. Consequently, QT intervals were measured and compared in the two  groups. Results: If long QT interval was defined to be longer than 0.47 second, no significant difference was noted between two groups. On the other hand, if this interval was defined to be equal to or longer than 0.46 second, long QT intervals are more frequent in convulsive children. Conclusions: In this study, long QT interval, defined as QT interval 0.46 second, is found more frequently in children with seizure than non-convulsing ones. It is recommended that children with history of seizure without any identifiable causes and that is unresponsive to  anticonvulsive drugs should be investigated with ECG.Key words: Child, Diagnostic Errors, Long QT Syndrome, Seizur
TRA-961: FOAM GLASS LIGHTWEIGHT AGGREGATE: THE NEW APPROACH
Foam glass lightweight aggregate (LWA) derived from mixed waste and recycled glass has great potential for use as an alternative material for several applications in building and other industrial applications. Despite the significant superior features of the current product, there is still room for further research to improve the structural performance of newly developed foam glass and foam glass-ceramics produced from waste and recycled materials. Improvements may be achieved through controlling microstructures and the distributions of pore sizes and shapes, altering chemical and phase compositions, creating reinforced structures by the inclusion of other fibrous materials as well as adding colour to the foam glass and glass-ceramics. One commercially used foam glass gravel has been selected and was the subject of a wide range of tests to determine its physical and mechanical properties and to compare them to conventional products in the industry. Results obtained from percent crushed particle content, abrasion resistance and freezing and thawing resistance testing are presented and analysed. Methods for improving foam properties and expanding its usefulness in engineering applications are proposed; adjusting the microstructure characteristics and changing the chemical and phase composition were found to be effective. A deeper examination of the microstructure by microscopy (SEM or TEM) further revealed the promising features of the evaluated material as a new versatile construction material. In addition, inclusion of colouring oxides in foam formulation was examined as an innovative way for increasing mechanical strength in a colourful product
Epigenetic modelling of former, current and never smokers
BACKGROUND: DNA methylation (DNAm) performs excellently in the discrimination of current and former smokers from never smokers, where AUCs > 0.9 are regularly reported using a single CpG site (cg05575921; AHRR). However, there is a paucity of DNAm models which attempt to distinguish current, former and never smokers as individual classes. Derivation of a robust DNAm model that accurately distinguishes between current, former and never smokers would be particularly valuable to epidemiological research (as a more accurate smoking definition vs. self-report) and could potentially translate to clinical settings. Therefore, we appraise 4 DNAm models of ternary smoking status (that is, current, former and never smokers): methylation at cg05575921 (AHRR model), weighted scores from 13 CpGs created by Maas et al. (Maas model), weighted scores from a LASSO model of candidate smoking CpGs from the literature (candidate CpG LASSO model), and weighted scores from a LASSO model supplied with genome-wide 450K data (agnostic LASSO model). Discrimination is assessed by AUC, whilst classification accuracy is assessed by accuracy and kappa, derived from confusion matrices. RESULTS: We find that DNAm can classify ternary smoking status with reasonable accuracy, including when applied to external data. Ternary classification using only DNAm far exceeds the classification accuracy of simply assigning all classes as the most prevalent class (63.7% vs. 36.4%). Further, we develop a DNAm classifier which performs well in discriminating current from former smokers (agnostic LASSO model AUC in external validation data: 0.744). Finally, across our DNAm models, we show evidence of enrichment for biological pathways and human phenotype ontologies relevant to smoking, such as haemostasis, molybdenum cofactor synthesis, body fatness and social behaviours, providing evidence of the generalisability of our classifiers. CONCLUSIONS: Our findings suggest that DNAm can classify ternary smoking status with close to 65% accuracy. Both the ternary smoking status classifiers and current versus former smoking status classifiers address the present lack of former smoker classification in epigenetic literature; essential if DNAm classifiers are to adequately relate to real-world populations. To improve performance further, additional focus on improving discrimination of current from former smokers is necessary. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13148-021-01191-6
Microfluidics as efficient technology for the isolation and characterization of stem cells.
The recent years have been passed with significant progressions in the utilization of microfluidic technologies for cellular investigations. The aim of microfluidics is to mimic small-scale body environment with features like optical transparency. Microfluidics can screen and monitor different cell types during culture and study cell function in response to stimuli in a fully controlled environment. No matter how the microfluidic environment is similar to in vivo environment, it is not possible to fully investigate stem cells behavior in response to stimuli during cell proliferation and differentiation. Researchers have used stem cells in different fields from fundamental researches to clinical applications. Many cells in the body possess particular functions, but stem cells do not have a specific task and can turn into almost any type of cells. Stem cells are undifferentiated cells with the ability of changing into specific cells that can be essential for the body. Researchers and physicians are interested in stem cells to use them in testing the function of the body's systems and solving their complications. This review discusses the recent advances in utilizing microfluidic techniques for the analysis of stem cells, and mentions the advantages and disadvantages of using microfluidic technology for stem cell research
Comparative transcriptomics reveals commonalities and differences in the genetic underpinnings of a floral dimorphism
Distyly, a floral dimorphism associated with heteromorphic self-incompatibility and controlled by the S-locus supergene, evolved independently multiple times. Comparative analyses of the first transcriptome atlas for the main distyly model, Primula veris, with other distylous species produced the following findings. A set of 53 constitutively expressed genes in P. veris did not include any of the housekeeping genes commonly used to normalize gene expression in qPCR experiments. The S-locus gene CYP acquired its role in controlling style elongation via a change in expression profile. Comparison of genes differentially expressed between floral morphs revealed that brassinosteroids and auxin are the main hormones controlling style elongation in P. veris and Fagopyrum esculentum, respectively. Furthermore, shared biochemical pathways might underlie the expression of distyly in the distantly related P. veris, F. esculentum and Turnera subulata, suggesting a degree of correspondence between evolutionary convergence at phenotypic and molecular levels. Finally, we provide the first evidence supporting the previously proposed hypothesis that distyly supergenes of distantly related species evolved via the recruitment of genes related to the phytochrome-interacting factor (PIF) signaling network. To conclude, this is the first study that discovered homologous genes involved in the control of distyly in distantly related taxa
A Novel Approach for Ellipsoidal Outer-Approximation of the Intersection Region of Ellipses in the Plane
In this paper, a novel technique for tight outer-approximation of the
intersection region of a finite number of ellipses in 2-dimensional (2D) space
is proposed. First, the vertices of a tight polygon that contains the convex
intersection of the ellipses are found in an efficient manner. To do so, the
intersection points of the ellipses that fall on the boundary of the
intersection region are determined, and a set of points is generated on the
elliptic arcs connecting every two neighbouring intersection points. By finding
the tangent lines to the ellipses at the extended set of points, a set of
half-planes is obtained, whose intersection forms a polygon. To find the
polygon more efficiently, the points are given an order and the intersection of
the half-planes corresponding to every two neighbouring points is calculated.
If the polygon is convex and bounded, these calculated points together with the
initially obtained intersection points will form its vertices. If the polygon
is non-convex or unbounded, we can detect this situation and then generate
additional discrete points only on the elliptical arc segment causing the
issue, and restart the algorithm to obtain a bounded and convex polygon.
Finally, the smallest area ellipse that contains the vertices of the polygon is
obtained by solving a convex optimization problem. Through numerical
experiments, it is illustrated that the proposed technique returns a tighter
outer-approximation of the intersection of multiple ellipses, compared to
conventional techniques, with only slightly higher computational cost
Dendritic Cells Cross-Present Immunogenic Lentivector-Encoded Antigen from Transduced Cells to Prime Functional T Cell Immunity
Recombinant lentiviral vectors (LVs) are highly effective vaccination vehicles that elicit protective T cell immunity in disease models. Dendritic cells (DCs) acquire antigen at sites of vaccination and migrate to draining lymph nodes, where they prime vaccine-specific T cells. The potency with which LVs activate CD8+ T cell immunity has been attributed to the transduction of DCs at the immunization site and durable presentation of LV-encoded antigens. However, it is not known how LV-encoded antigens continue to be presented to T cells once directly transduced DCs have turned over. Here, we report that LV-encoded antigen is efficiently cross-presented by DCs in vitro. We have further exploited the temporal depletion of DCs in the murine CD11c.DTR (diphtheria toxin receptor) model to demonstrate that repopulating DCs that were absent at the time of immunization cross-present LV-encoded antigen to T cells in vivo. Indirect presentation of antigen from transduced cells by DCs is sufficient to prime functional effector T cells that control tumor growth. These data suggest that DCs cross-present immunogenic antigen from LV-transduced cells, thereby facilitating prolonged activation of T cells in the absence of circulating LV particles. These are findings that may impact on the future design of LV vaccination strategies
A framework for qualitative communications using big packet protocol
In the current Internet architecture, a packet is a minimal or fundamental unit upon which different actions such as classification, forwarding, or discarding are performed by the network nodes. When faced with constrained or poor network conditions, a packet is subjected to undesirable drops and re-transmissions, resulting in unpredictable delays and subsequent traffic overheads in the network. Alternately, we introduce qualitative communication services which allow partial, yet timely, delivery of a packet instead of dropping it entirely. These services allow breaking down packet payloads into smaller units (called chunks), enabling much finer granularity of bandwidth utilization.
We propose Packet Wash as anew operation in forwarding nodes to support qualitative services. Upon packet error or network congestion, the forwarding node selectively removes some chunk(s) from the payload based on the relationship among the chunks or the individual signiicance level of each chunk. We also present a qualitative communication framework as well as a Packet Wash directive implemented in a newly evolved data plane technology, called Big Packet Protocol (BPP)
- …