72 research outputs found

    Electropolymerization of diaminofluorene and its electrochemical properties

    Get PDF
    AbstractPoly 2,7-diaminofluorene (PDAF)/Au modified electrode was prepared using 2,7-diamino fluorene (DAF) dissolved in acetonitrile (ACN) containing 0.1M LiClO4 using consecutive multisweep cyclic voltammetry (CV) and controlled potential electrolysis (CPE) techniques. Factors affecting the film formation, such as limits of potential cycling, sweep rate, number of sweeping cycles, monomer concentration, and also polymerization techniques were examined in detail. It was found that the optimum conditions, using a potentiodynamic technique on Au electrode as the working electrode, are by sweeping the potential between –200mV and 800mV at a sweep rate of 50mV/s for 10 cycles using 5mM DAF monomer solution. The obtained modified electrode was active only in acidic aqueous solutions (pH range from 0 to 2) and its activity was found to be pH dependent. PDAF was isolated and characterized using UV–vis, 1HNMR and SEM analyses. The electrical conductivity was found to be 1.5×10−5Scm−1. An electropolymerization mechanism was proposed and discussed based on the obtained experimental data and molecular orbital calculations. The obtained modified electrode has been found to improve the electrochemical reversibility and decrease the overpotential of hydroquinone. PDAF/Au was stable chemically and electrochemically both in aqueous and organic solutions, making it an excellent candidate for sensing and/ or electrocatalytic applications

    A Simplified Improvement on the Design of QO-STBC Based on Hadamard Matrices

    Get PDF
    yesIn this paper, a simplified approach for implementing QO-STBC is presented. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard property to attain full diversity. Hadamard matrix has the characteristic that diagonalizes a quasi-cyclic matrix and decoding matrix that are diagonal matrix permit linear decoding. Using quasi-cyclic matrices in designing QO-STBC systems require that the codes should be rotated to reasonably separate one code from another such that error floor in the design can be minimized. It will be shown that, orthogonalizing the secondary codes and then imposing the Hadamard criteria that the scheme can be well diagonalized. The results of this simplified approach demonstrate full diversity and better performance than the interference-free QO-STBC. Results show about 4 dB gain with respect to the traditional QO-STBC scheme and performs alike with the earlier Hadamard based QO-STBC designed with rotation. These results achieve the consequent mathematical proposition of the Hadamard matrix and its property also shown in this study

    Novel Fractional Wavelet Transform with Closed-Form Expression

    Get PDF
    yesA new wavelet transform (WT) is introduced based on the fractional properties of the traditional Fourier transform. The new wavelet follows from the fractional Fourier order which uniquely identifies the representation of an input function in a fractional domain. It exploits the combined advantages of WT and fractional Fourier transform (FrFT). The transform permits the identification of a transformed function based on the fractional rotation in time-frequency plane. The fractional rotation is then used to identify individual fractional daughter wavelets. This study is, for convenience, limited to one-dimension. Approach for discussing two or more dimensions is shown

    Multi-Service Group Key Management for High Speed Wireless Mobile Multicast Networks

    Get PDF
    YesRecently there is a high demand from the Internet Service Providers to transmit multimedia services over high speed wireless networks. These networks are characterized by high mobility receivers which perform frequent handoffs across homogenous and heterogeneous access networks while maintaining seamless connectivity to the multimedia services. In order to ensure secure delivery of multimedia services to legitimate group members, the conventional cluster based group key management (GKM) schemes for securing group communication over wireless mobile multicast networks have been proposed. However, they lack efficiency in rekeying the group key in the presence of high mobility users which concurrently subscribe to multiple multicast services that co-exist in the same network. This paper proposes an efficient multi-service group key management scheme (SMGKM) suitable for high mobility users which perform frequent handoffs while participating seamlessly in multiple multicast services. The users are expected to drop subscriptions after multiple cluster visits hence inducing huge key management overhead due to rekeying the previously visited cluster keys. The already proposed multi-service SMGKM system with completely decentralised authentication and key management functions is adopted to meet the demands for high mobility environment with the same level of security. Through comparisons with existing GKM schemes and simulations, SMGKM shows resource economy in terms of reduced communication and less storage overheads in a high speed environment with multiple visits

    Secondary user undercover cooperative dynamic access protocol for overlay cognitive radio networks

    Get PDF
    YesA secondary cooperative overlay dynamic spectrum access protocol in cognitive radio networks is proposed, allowing secondary users to access the primary system using full power without causing harmful interference to primary users. Moreover, an enhancement in the primary system will be achieved as a result of secondary relaying of primary messages. A detailed description of the protocol is given and illustrated with network scenarios

    A Multi-Antenna Design Scheme based on Hadamard Matrices for Wireless Communications.

    Get PDF
    YesA quasi-orthogonal space time block coding (QO-STBC) scheme that exploits Hadamard matrix properties is studied and evaluated. At first, an analytical solution is derived as an extension of some earlier proposed QO-STBC scheme based on Hadamard matrices, called diagonalized Hadamard space-time block coding (DHSBTC). It explores the ability of Hadamard matrices that can translate into amplitude gains for a multi-antenna system, such as the QO-STBC system, to eliminate some off-diagonal (interference) terms that limit the system performance towards full diversity. This property is used in diagonalizing the decoding matrix of the QOSTBC system without such interfering elements. Results obtained quite agree with the analytical solution and also reflect the full diversity advantage of the proposed QO-STBC system design scheme. Secondly, the study is extended over an interference-free QO-STBC multi-antenna scheme, which does not include the interfering terms in the decoding matrix. Then, following the Hadamard matrix property advantages, the gain obtained (for example, in 4x1 QO-STBC scheme) in this study showed 4-times louder amplitude (gain) than the interference-free QOSTBC and much louder than earlier DHSTBC for which the new approach is compared with
    • …
    corecore