21 research outputs found

    Evaluation of Interface Defects in Inaccessible Reactor Shrink Fit Nozzle Welds Using Ultrasonic Waves

    No full text
    This study proposes an effective method to inspect inaccessible nuclear power reactor head nozzles using interface waves that propagate along the shrink fit boundary of a reactor head. The reactor head is relatively thick, which makes it difficult to inspect from the outside by conventional ultrasonic testing. However, interface waves can propagate a long distance from a fixed transducer position. The inside of the nuclear reactor has limited access due to the high radiation, so the transducers are located outside the nuclear reactor head, and interface waves propagate into the nuclear reactor to detect defects. A numerical simulation and experiments were carried out to validate the method. Various defect cases that simulate field failures are also presented, and the proposed technique shows satisfactory defect classification

    Utility of Lamb Waves for Near Surface Crack Detection

    Get PDF
    Ultrasonic waves have a long history in detection of surface breaking cracks. Attempts are being made to use guided waves as a defect detection tool in aging skin structures in aircrafts and in the power generation industries as these waves offer a great advantage over conventional bulks waves. Guided waves can be excited at one position and allowed to propagate considerable distances before attenuating. Depending on the configuration employed for defect detection, reflected or received waveforms give information regarding the integrity of the structure along the line of sight. This description makes the technique look rather simple. Particularly, NDT utilizing Lamb waves is more complex due to the existence of two or more modes at any given frequency. Success was reported by several authors on defect detection using Lamb waves. Brief or no explanation was given on the reasons behind the choice of specific excitation frequencies and incident angles. The emphasis was solely on the defect detection aspects.</p

    Characterization of Microstructural Evolution by Ultrasonic Nonlinear Parameters Adjusted by Attenuation Factor

    No full text
    The use of an acoustic nonlinear response has been accepted as a promising alternative for the assessment of micro-structural damage in metallic solids. However, the full mechanism of the acoustic nonlinear response caused by the material micro-damages is quite complex and not yet well understood. In this paper, the effect of material microstructural evolution on acoustic nonlinear response of ultrasonic waves is investigated in rolled copper and brass. Microstructural evolution in the specimens is artificially controlled by cold rolling and annealing treatments. The correlations of acoustic nonlinear responses of ultrasonic waves in the specimens corresponding to the microstructural changes are obtained experimentally. To eliminate the influence of attenuation, which was induced by microstructural changes in specimens, experimentally-measured nonlinear parameters are corrected by an attenuation correction term. An obvious decrease of nonlinearity with the increase of grain size is found in the study. In addition, the influences of material micro-damages introduced by cold rolling on the acoustic nonlinear response in specimens are compared with the ones of grain boundaries controlled by heat treatment in specimens. The experimental results show that the degradation of material mechanical properties is not always accompanied by the increase of acoustic nonlinearity generated. It suggested that the nonlinear ultrasonic technique can be used to effectively characterize the material degradations, under the condition that the variations of grain sizes in the specimens under different damage states are negligible

    Characterization of Degradation Progressive in Composite Laminates Subjected to Thermal Fatigue and Moisture Diffusion by Lamb Waves

    No full text
    Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates

    A Comparative Study on the Elastic Characteristics of an Aluminum Thin-Film Using Laser Optical Measurement Techniques

    No full text
    The increase of a surface area-to-volume ratio with the reduction of material dimensions significantly alters the characteristics of materials from their macroscopic status. Therefore, efforts have been made to establish evaluation techniques for nanoscale films. While contact mechanics-based techniques are conventionally available, non-contact and nondestructive methods would be preferable in case damages left on a sample after testing are not desirable, or an in situ assessment is required. In the present study, the Young’s modulus of an aluminum thin-film was evaluated using two different laser optical measurement techniques. First, microscale beam testing has been performed so that the resonant frequency change of a microfabricated cantilever beam induced by coating of a 153 nm thick aluminum layer on its top surface can be detected using a laser interferometer in order to evaluate the mechanical property through modal analysis using the finite element method. Second, picosecond ultrasonics were employed for cross-verification so that the mechanical characteristics can be evaluated through the investigation of the longitudinal bulk wave propagation behavior. Results show that the Young’s moduli from both measurements agree well with each other within 3.3% error, proving that the proposed techniques are highly effective for the study of nanoscale films

    High-Precision Noncontact Guided Wave Tomographic Imaging of Plate Structures Using a DHB Algorithm

    No full text
    The safety diagnostic inspection of large plate structures, such as nuclear power plant containment liner plates and aircraft wings, is an important issue directly related to the safety of life. This research intends to present a more quantitative defect imaging in the structural health monitoring (SHM) technique by using a wide range of diagnostic techniques using guided ultrasound. A noncontact detection system was applied to compensate for such difficulties because direct access inspection is not possible for high-temperature and massive areas such as nuclear power plants and aircraft. Noncontact systems use unstable pulse laser and air-coupled transducers. Automatic detection systems were built to increase inspection speed and precision and the signal was measured. In addition, a new Difference Hilbert Back Projection (DHB) algorithm that can replace the reconstruction algorithm for the probabilistic inspection of damage (RAPID) algorithm used for imaging defects has been successfully applied to quantitative imaging of plate structure defects. Using an automatic detection system, the precision and detection efficiency of data collection has been greatly improved, and the same results can be obtained by reducing errors in experimental conditions that can occur in repeated experiments. Defects were made in two specimens, and comparative analysis was performed to see if each algorithm can quantitatively represent defects in multiple defects. The new DHB algorithm presented the possibility of observing and predicting the growth direction of defects through the continuous monitoring system

    Defect Detection and Characterization in Concrete Based on FEM and Ultrasonic Techniques

    No full text
    In order to estimate the crack depth in concrete using time-of-flight, finite element analysis and experiments were performed on non-cracked concrete blocks and 45 mm and 70 mm vertical cracks. As a result of measuring the time-of-flight change by changing the positions of the transmitter and receiver, it was confirmed that the finite element analysis results agreed with the experimental results, and high accuracy was confirmed by various formulas for calculating the depth of defects using the obtained experimental measurements for comparison. In addition to the verification of the simulation and experimental theory, research was conducted through actual field cases, and methodologies for crack detection and depth evaluation for concrete structures were presented, and furthermore, the expected effects of improving the soundness and safety of structures were shown
    corecore