1,169 research outputs found

    Growth of a Richtmyer-Meshkov turbulent layer after reshock

    Get PDF
    This paper presents a numerical study of a reshocked turbulent mixing layer using high-order accurate Implicit Large-Eddy-Simulations (ILES). Existing theoretical approaches are discussed, and the theory of Youngs (detailed in Ref. 1) is extended to predict the behaviour of a reshocked mixing layer formed initially from a shock interacting with a broadband instability. The theory of Mikaelian2 is also extended to account for molecular mixing in the single-shocked layer prior to reshock. Simulations are conducted for broadband and narrowband initial perturbations and results for the growth rate of the reshocked layer and the decay rate of turbulent kinetic energy show excellent agreement with the extended theoretical approach. Reshock causes a marginal decrease in mixing parameters for the narrowband layer, but a significant increase for the broadband initial perturbation. The layer properties are observed to be very similar post-reshock, however, the growth rate exponent for the mixing layer width is higher in the broadband case, indicating that the reshocked layer still has a dependence (although weakened) on the initial conditions. These results have important implications for Unsteady Reynolds Averaged Navier Stokes modelling of such instabilities

    The Sporting Set Winters in Florida: Fertile Ground for the Leisure Revolution, 1870-1930

    Get PDF
    Maurice Fatio made his first visit to Palm Beach, Florida, at the height of the social season in February 1923. The young Swiss architect planned on trolling for business among the resort\u27s elite guests, hoping to supplement his New York City firm\u27s clientele. The pace and nature of the Palm Beach scene, however, caught him by surprise. In a letter to his parents written on the fourth day of his visit, he exclaimed, I have never led a more intense life. Describing a typical day, he explained that one gets up at 10 o\u27clock to play tennis; at noon one bathes at a splendid beach . . . golf in the afternoon . . . and the day ends with magnificent balls in private homes which are veritable palaces. While he admitted that he had not yet had time to attend to his business, the exhausting lifestyle made him \u27feel physically marvelous. Fatio\u27s letter hints at the central role sport and outdoor recreation played in shaping everyday activities and the sense of place that helped define wintering in Florida

    Cryopreservation of Preimplantation Embryos of Cattle, Sheep, and Goats

    Get PDF
    Preimplantation embryos from cattle, sheep, and goats may be cryopreserved for short- or long-term storage. Preimplantation embryos consist predominantly of water, and the avoidance of intracellular ice crystal formation during the cryopreservation process is of paramount importance to maintain embryo viability. Embryos are placed into a hypertonic solution (1.4 – 1.5 M) of a cryoprotective agent (CPA) such as ethylene glycol (EG) or glycerol (GLYC) to create an osmotic gradient that facilitates cellular dehydration. After embryos reach osmotic equilibrium in the CPA solution, they are individually loaded in the hypertonic CPA solution into 0.25 ml plastic straws for freezing. Embryos are placed into a controlled rate freezer at a temperature of -6°C. Ice crystal formation is induced in the CPA solution surrounding the embryo, and crystallization causes an increase in the concentration of CPA outside of the embryo, causing further cellular dehydration. Embryos are cooled at a rate of 0.5°C/min, enabling further dehydration, to a temperature of -34°C before being plunged into liquid nitrogen (-196°C). Cryopreserved embryos must be thawed prior to transfer to a recipient (surrogate) female. Straws containing the embryos are removed from the liquid nitrogen dewar, held in room temperature air for 3 to 5 sec, and placed into a 37°C water bath for 25 to 30 sec. Embryos cryopreserved in GLYC are placed into a 1 M solution of sucrose for 10 min for removal of the CPA before transfer to a recipient (surrogate) female. Embryos cryopreserved in EG, however, may be directly transferred to the uterus of a recipient

    Assessment of BoviPureTM for the In Vitro Production of Bovine Embryos

    Get PDF
    The objective of this study was to examine the potential utility of a commercially available sperm separation and purification product for the in vitro production of bovine embryos. Bovine oocytes were purchased from a commercial supplier, and matured oocytes were randomly allocated to one of two treatments. Oocytes were co-incubated with frozen-thawed semen washed twice with BoviPureTM (BoviPure group) or with modified Brackett-Oliphant medium (control group). After a 6-hour insemination period, oocytes were cultured in vitro for 8 days. Cleavage rate of embryos was determined 48 hours post-insemination, and blastocyst formation rate was assessed on day 8 of culture. The experiment was replicated three times, and data were analyzed using chi-square analysis. Washing of sperm in BoviPureTM had no effect (P\u3e.05) on either cleavage rate (77.2%) or blastocyst development (21.6%) when compared with controls (71.9% and 17.1%, respectively). These results indicate that, under conditions of our study, the washing of sperm with BoviPureTM did not significantly enhance the ability to produce bovine embryos in vitro

    The Shape of Cas A

    Full text link
    Based on optical, IR and X-ray studies of Cas A, we propose a geometry for the remnant based on a "jet-induced" scenario with significant systematic departures from axial symmetry. In this model, the main jet axis is oriented in the direction of strong blue-shifted motion at an angle of 110 - 120 degrees East of North and about 40 - 50 degrees to the East of the line of sight. Normal to this axis would be an expanding torus as predicted by jet-induced models. In the proposed geometry, iron-peak elements in the main jet-like flow could appear "beyond" the portions of the remnant rich in silicon by projection effects, not the effect of mixing. In the context of the proposed geometry, the displacement of the compact object from the kinematic center of the remnant at a position angle of ~169 degrees can be accommodated if the motion of the compact object is near to, but slightly off from, the direction of the main "jet" axis by of order 30 degrees. In this model, the classical NE "jet," the SW "counter-jet" and other protrusions, particularly the "hole" in the North, are non-asymmetric flows approximately in the equatorial plane, e.g., out through the perimeter of the expanding torus, rather than being associated with the main jet. We explore the spoke-like flow in the equatorial plane in terms of Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholz instabilities and illustrate these instabilities with a jet-induced simulation.Comment: 25 pages, 4 figures. Accepted for publication in the Astrophysical Journa
    • …
    corecore