72 research outputs found

    EPINET: A Fully-Convolutional Neural Network Using Epipolar Geometry for Depth from Light Field Images

    Full text link
    Light field cameras capture both the spatial and the angular properties of light rays in space. Due to its property, one can compute the depth from light fields in uncontrolled lighting environments, which is a big advantage over active sensing devices. Depth computed from light fields can be used for many applications including 3D modelling and refocusing. However, light field images from hand-held cameras have very narrow baselines with noise, making the depth estimation difficult. any approaches have been proposed to overcome these limitations for the light field depth estimation, but there is a clear trade-off between the accuracy and the speed in these methods. In this paper, we introduce a fast and accurate light field depth estimation method based on a fully-convolutional neural network. Our network is designed by considering the light field geometry and we also overcome the lack of training data by proposing light field specific data augmentation methods. We achieved the top rank in the HCI 4D Light Field Benchmark on most metrics, and we also demonstrate the effectiveness of the proposed method on real-world light-field images.Comment: Accepted to CVPR 2018, Total 10 page

    2-Bromo-p-terphen­yl

    Get PDF
    In the title compound, C18H13Br, the dihedral angles between the mean planes of the central benzene ring and the mean planes of the outer phenyl and bromo­phenyl rings are 33.47 (8) and 66.35 (8)°, respectively. In the crystal, weak C—H⋯π and inter­molecular Br⋯Br [3.5503 (15) Å] inter­actions contribute to the stabilization of the packing

    Toward Green Synthesis of Graphene Oxide Using Recycled Sulfuric Acid via Couette-Taylor Flow

    Get PDF
    Developing eco-friendly and cost-effective processes for the synthesis of graphene oxide (GO) is essential for its widespread industrial applications. In this work, we propose a green synthesis technique for GO production using recycled sulfuric acid and filter-processed oxidized natural graphite obtained from a Couette-Taylor flow reactor. The viscosity of reactant mixtures processed from Couette-Taylor flow was considerably lower (???200 cP at 25 ??C) than that of those from Hummers' method, which enabled the simple filtration process. The filtered sulfuric acid can be recycled and reused for the repetitive GO synthesis with negligible differences in the as-synthesized GO qualities. This removal of sulfuric acid has great potential in lowering the overall GO production cost as the amount of water required during the fabrication process, which takes a great portion of the total production cost, can be dramatically reduced after such acid filtration. The proposed eco-friendly GO fabrication process is expected to promote the commercial application of graphene materials into industry shortly

    Protective Effects of N

    Get PDF
    Objective. Since oligodendrocyte progenitor cells (OPCs) are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE), the present study was aimed at investigating the protective effects of N-acetyl-L-cysteine (NAC), a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases

    Underactuated Finger Mechanism Using Contractible Slider-Cranks and Stackable Four-Bar Linkages

    No full text

    4D Multiscale Origami Soft Robots: A Review

    No full text
    Time-dependent shape-transferable soft robots are important for various intelligent applications in flexible electronics and bionics. Four-dimensional (4D) shape changes can offer versatile functional advantages during operations to soft robots that respond to external environmental stimuli, including heat, pH, light, electric, or pneumatic triggers. This review investigates the current advances in multiscale soft robots that can display 4D shape transformations. This review first focuses on material selection to demonstrate 4D origami-driven shape transformations. Second, this review investigates versatile fabrication strategies to form the 4D mechanical structures of soft robots. Third, this review surveys the folding, rolling, bending, and wrinkling mechanisms of soft robots during operation. Fourth, this review highlights the diverse applications of 4D origami-driven soft robots in actuators, sensors, and bionics. Finally, perspectives on future directions and challenges in the development of intelligent soft robots in real operational environments are discussed

    Retail Regulation in South Korea: The NoBrand Case

    No full text
    This study examines how NoBrand has faced legal regulations in Korea, and NoBrand’s transition to the franchise system to respond to regulatory changes (examined with a case analysis). In 2015, Emart, a Korean retail giant, launched its private brand (PB), NoBrand, to address stagnant sales. With advantages in price and quality due to supply chain management (SCM), NoBrand not only established a successful foothold, but also gained success in the market. Despite the rapid growth of NoBrand, it has faced government regulations that restrict its operations. To respond to these regulations, NoBrand changed its direct operating system to a franchise system that allows an individual owner to run his or her own NoBrand store. However, the transition triggered conflicts with both local stakeholders and other branches of its parent firm, Emart. By analyzing these conflicts, this study finds that Korean retail policy did not effectively protect small business owners as primarily aimed

    Surface engineered gold nanoparticles through highly stable metal-surfactant complexes

    No full text
    Monodispersed Au nanoparticles were synthesized by the reduction of Au-decyltrimethylammonium bromide (Au-DTAB), which was easily prepared via the reaction of HAuCl4 and DTAB. This Au-DTAB complex is highly stable in air and moisture, and suitable for large-scale synthesis of uniform-sized Au nanoparticles. The nanoparticles were characterized by transmission electron microscopy, optical absorption spectrometry, X-ray diffraction, and Fourier Transform infrared spectroscopy. The size of Au nanoparticles was controlled in the range of 5-10 nm by changing the concentrations of reducing agent and Au precursor. The resulting Au nanoparticles were transferred to the aqueous phase after surface engineering using multidentate polymeric ligands with multiple imidazole functional groups. Polymeric imidazole ligands (PILs) demonstrated enhanced binding stability with the Au surface, and overcame the disadvantage of multidentate thiol ligand systems which have oxidative cross-linking and the formation of disulfide bonding. The colloidal stability of surface engineered Au nanoparticles with PILs was investigated by dynamic light scattering (DLS) characterization.close0
    corecore