687 research outputs found
The long journey from the giant-monopole resonance to the nuclear-matter incompressibility
Differences in the density dependence of the symmetry energy predicted by
nonrelativistic and relativistic models are suggested, at least in part, as the
culprit for the discrepancy in the values of the compression modulus of
symmetric nuclear matter extracted from the energy of the giant monopole
resonance in 208Pb. ``Best-fit'' relativistic models, with stiffer symmetry
energies than Skyrme interactions, consistently predict higher compression
moduli than nonrelativistic approaches. Relativistic models with compression
moduli in the physically acceptable range of K=200-300 MeV are used to compute
the distribution of isoscalar monopole strength in 208Pb. When the symmetry
energy is artificially softened in one of these models, in an attempt to
simulate the symmetry energy of Skyrme interactions, a lower value for the
compression modulus is indeed obtained. It is concluded that the proposed
measurement of the neutron skin in 208Pb, aimed at constraining the density
dependence of the symmetry energy and recently correlated to the structure of
neutron stars, will also become instrumental in the determination of the
compression modulus of nuclear matter.Comment: 9 pages with 2 (eps) figure
Recommended from our members
INTEGRATION OF RELIABILITY WITH MECHANISTIC THERMALHYDRAULICS: REPORT ON APPROACH AND TEST PROBLEM RESULTS
The Risk-Informed Safety Margin Characterization (RISMC) pathway of the Light Water Reactor Sustainability Program is developing simulation-based methods and tools for analyzing safety margin from a modern perspective. [1] There are multiple definitions of 'margin.' One class of definitions defines margin in terms of the distance between a point estimate of a given performance parameter (such as peak clad temperature), and a point-value acceptance criterion defined for that parameter (such as 2200 F). The present perspective on margin is that it relates to the probability of failure, and not just the distance between a nominal operating point and a criterion. In this work, margin is characterized through a probabilistic analysis of the 'loads' imposed on systems, structures, and components, and their 'capacity' to resist those loads without failing. Given the probabilistic load and capacity spectra, one can assess the probability that load exceeds capacity, leading to component failure. Within the project, we refer to a plot of these probabilistic spectra as 'the logo.' Refer to Figure 1 for a notional illustration. The implications of referring to 'the logo' are (1) RISMC is focused on being able to analyze loads and spectra probabilistically, and (2) calling it 'the logo' tacitly acknowledges that it is a highly simplified picture: meaningful analysis of a given component failure mode may require development of probabilistic spectra for multiple physical parameters, and in many practical cases, 'load' and 'capacity' will not vary independently
INTEGRATION OF RELIABILITY WITH MECHANISTIC THERMALHYDRAULICS: REPORT ON APPROACH AND TEST PROBLEM RESULTS
The Risk-Informed Safety Margin Characterization (RISMC) pathway of the Light Water Reactor Sustainability Program is developing simulation-based methods and tools for analyzing safety margin from a modern perspective. [1] There are multiple definitions of 'margin.' One class of definitions defines margin in terms of the distance between a point estimate of a given performance parameter (such as peak clad temperature), and a point-value acceptance criterion defined for that parameter (such as 2200 F). The present perspective on margin is that it relates to the probability of failure, and not just the distance between a nominal operating point and a criterion. In this work, margin is characterized through a probabilistic analysis of the 'loads' imposed on systems, structures, and components, and their 'capacity' to resist those loads without failing. Given the probabilistic load and capacity spectra, one can assess the probability that load exceeds capacity, leading to component failure. Within the project, we refer to a plot of these probabilistic spectra as 'the logo.' Refer to Figure 1 for a notional illustration. The implications of referring to 'the logo' are (1) RISMC is focused on being able to analyze loads and spectra probabilistically, and (2) calling it 'the logo' tacitly acknowledges that it is a highly simplified picture: meaningful analysis of a given component failure mode may require development of probabilistic spectra for multiple physical parameters, and in many practical cases, 'load' and 'capacity' will not vary independently
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
Conductance anomalies in quantum wires
We study the conductance threshold of clean nearly straight quantum wires in
the magnetic field. As a quantitative example we solve exactly the scattering
problem for two-electrons in a wire with planar geometry and a weak bulge. From
the scattering matrix we determine conductance via the Landauer-Buettiker
formalism. The conductance anomalies found near 0.25(2e^2/h) and 0.75(2e^2/h)
are related to a singlet resonance and a triplet resonance, respectively, and
survive to temperatures of a few degrees. With increasing in-plane magnetic
field the conductance exhibits a plateau at e^2/h, consistent with recent
experiments.Comment: Quantum wire with planar geometry; in-plane magnetic fiel
Self-consistent description of nuclear compressional modes
Isoscalar monopole and dipole compressional modes are computed for a variety
of closed-shell nuclei in a relativistic random-phase approximation to three
different parametrizations of the Walecka model with scalar self-interactions.
Particular emphasis is placed on the role of self-consistency which by itself,
and with little else, guarantees the decoupling of the spurious
isoscalar-dipole strength from the physical response and the conservation of
the vector current. A powerful new relation is introduced to quantify the
violation of the vector current in terms of various ground-state form-factors.
For the isoscalar-dipole mode two distinct regions are clearly identified: (i)
a high-energy component that is sensitive to the size of the nucleus and scales
with the compressibility of the model and (ii) a low-energy component that is
insensitivity to the nuclear compressibility. A fairly good description of both
compressional modes is obtained by using a ``soft'' parametrization having a
compression modulus of K=224 MeV.Comment: 28 pages and 10 figures; submitted to PR
Processing and Transmission of Information
Contains research objectives and reports on five research projects
Asymptotic Normalization Coefficients for 13C+p->14N
The proton exchange reaction has been measured
at an incident energy of 162 MeV. Angular distributions were obtained for
proton transfer to the ground and low lying excited states in . Elastic
scattering of on also was measured out to the rainbow angle
region in order to find reliable optical model potentials. Asymptotic
normalization coefficients for the system have been
found for the ground state and the excited states at 2.313, 3.948, 5.106 and
5.834 MeV in . These asymptotic normalization coefficients will be used
in a determination of the S-factor for at solar
energies from a measurement of the proton transfer reaction
.Comment: 5 pages, 6 figure
Relaxation time for a dimer covering with height representation
This paper considers the Monte Carlo dynamics of random dimer coverings of
the square lattice, which can be mapped to a rough interface model. Two kinds
of slow modes are identified, associated respectively with long-wavelength
fluctuations of the interface height, and with slow drift (in time) of the
system-wide mean height. Within a continuum theory, the longest relaxation time
for either kind of mode scales as the system size N. For the real, discrete
model, an exact lower bound of O(N) is placed on the relaxation time, using
variational eigenfunctions corresponding to the two kinds of continuum modes.Comment: 12 pages, LaTeX; 1 figure in PostScript file; to appear, J. Stat.
Phys. Sections and subsections were reshuffled to improve presentation, some
text added on quantum-dimer model, fully-frustrated Ising model, and
application to general class of "height" model
- …