1,086 research outputs found

    Study on application of aerospace technology to improve surgical implants

    Get PDF
    The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance

    BIOL 1411- Botany Laboratory Manual

    Get PDF
    Botany Laboratory Manual By – Yolander R.Youngblood, PhD. This manual was reviewed by student editors, Ayanna Montegut and Ineceia Carter. Table of Contents 1. The Plant Cell Lab 2. Mitosis Lab 3. Plant Growth and Development Lab 4. Simple Tissue Lab 5. Leaf Lab 6. Stem Lab 7. Root Lab 8. Evolution of Land Plants Lab 9. Bryophyte Lab 10. Fern Lab 11. Gymnosperm Lab 12. Angiosperm Lab 13. Appendix a. Writing in the Scientific Notebook b. How to use the Microscope c. Plants and Their Structure d. Additional Video, Lecture, and Lab Resourceshttps://digitalcommons.pvamu.edu/pv-open-education-resources/1008/thumbnail.jp

    Freeze-drying Silica Based Aerogels Using Cryoprotectants and Eutectic Solvent Mixtures

    Get PDF
    Silica based aerogels have unique properties, including good thermal insulation and convective inhibition. A sol-gel process can be used to produce semi-opaque, monolithic gels, which can then be dried to produce aerogels. Multiple drying methods are available industrially, however, these methods require high temperatures and pressures, specialized equipment, and are time consuming. This project aims to experimentally study the possibility of a new method for drying wet gels through a freeze-drying process, with the use of cryoprotectants, eutectics, and polymers to inhibit and control ice formation and growth during drying. Silica wet gels were produced using tetraethylorthosilicate (TEOS), ethanol, water, and hydrochloric acid/ammonia hydroxide. After gelation the gels were subjected to solvent exchanges with varying concentrations of cryoprotectants, eutectics, polymers and combinations of the three. A customized freeze-dryer was used to obtain silica aerogels from wet gels, with monolithicity and porosity of the resulting aerogel measured by SEM and BET. The results indicated that the addition of cryoprotectants, eutectics, and polymers yielded monolithic foams which were structurally stable and had measurable porosity and surface area. Using the processes developed in this work would allow for simpler, more cost effective methods for drying wet gels to be developed; these methods could be used to produce freeze-dried aerogels with better properties and have potential for industrial implementation

    Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Get PDF
    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware

    The long journey from the giant-monopole resonance to the nuclear-matter incompressibility

    Full text link
    Differences in the density dependence of the symmetry energy predicted by nonrelativistic and relativistic models are suggested, at least in part, as the culprit for the discrepancy in the values of the compression modulus of symmetric nuclear matter extracted from the energy of the giant monopole resonance in 208Pb. ``Best-fit'' relativistic models, with stiffer symmetry energies than Skyrme interactions, consistently predict higher compression moduli than nonrelativistic approaches. Relativistic models with compression moduli in the physically acceptable range of K=200-300 MeV are used to compute the distribution of isoscalar monopole strength in 208Pb. When the symmetry energy is artificially softened in one of these models, in an attempt to simulate the symmetry energy of Skyrme interactions, a lower value for the compression modulus is indeed obtained. It is concluded that the proposed measurement of the neutron skin in 208Pb, aimed at constraining the density dependence of the symmetry energy and recently correlated to the structure of neutron stars, will also become instrumental in the determination of the compression modulus of nuclear matter.Comment: 9 pages with 2 (eps) figure

    Order from R. R. Youngblood to S.S. Mormacport Troops

    Get PDF
    Lieutenant R. B. Youngblood of the United States Navy implements a daily cleaning and inspection schedule for the S. S. Mormacport.https://egrove.olemiss.edu/creekmore/1006/thumbnail.jp

    Dynamic PRA: an Overview of New Algorithms to Generate, Analyze and Visualize Data

    Get PDF
    State of the art PRA methods, i.e. Dynamic PRA (DPRA) methodologies, largely employ system simulator codes to accurately model system dynamics. Typically, these system simulator codes (e.g., RELAP5 ) are coupled with other codes (e.g., ADAPT, RAVEN that monitor and control the simulation. The latter codes, in particular, introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, variable uncertainties) elements into the simulation. A typical DPRA analysis is performed by: 1. Sampling values of a set of parameters from the uncertainty space of interest 2. Simulating the system behavior for that specific set of parameter values 3. Analyzing the set of simulation runs 4. Visualizing the correlations between parameter values and simulation outcome Step 1 is typically performed by randomly sampling from a given distribution (i.e., Monte-Carlo) or selecting such parameter values as inputs from the user (i.e., Dynamic Event Tre

    Processing and Transmission of Information

    Get PDF
    Contains reports on five research projects
    • …
    corecore