5,351 research outputs found

    New Approach of Anti-VEGF Agents for Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of visual loss in older population. Angiogenesis is an important factor associated with the development of CNV due to AMD. Treatment of CNV with intravitreal anti-VEGF monotherapy is currently the standard of care. However, not all patients respond to monotherapy, and modified anti-VEGF treatment regimen and combination therapy may target reducing treatment frequency or improving visual outcome. This paper reviews the many clinical trials that have been performed utilizing several treatment regimens. While many trials have shown that this variable therapy is justifiable, further study is required to determine correct regimens and dosage

    ????????? ?????? ?????? ?????? ?????? ????????? ?????? ?????? ??????

    Get PDF
    Cryogenic machining uses liquid nitrogen (LN2) as a coolant. This machining process can reduce the cutting temperature and increase tool life. Titanium alloys have been widely used in the aerospace and automobile industries because of their high strength-to-weight ratio. However, they are difficult to machine because of their poor thermal properties, which reduce tool life. In this study, we applied cryogenic machining to titanium alloys. Orthogonal cutting experiments were performed at a low cutting speed (1.2 - 2.1 m/min) in three cooling conditions: dry, cryogenic, and cryogenic plus heat. Cutting force and friction coefficients were observed to evaluate the machining characteristics for each cooling condition. For the cryogenic condition, cutting force and friction coefficients increased, but decreased for the cryogenic plus heat condition

    ????????????????????? ?????? ????????? ??????????????? ???????????? ?????? ?????????

    Get PDF
    The surface roughness and cutting forces are the important factors for the machine-part quality during the hard-turning process. The aim of this paper is to optimize hard-cutting conditions via implementation of response surface methodology (RSM). The experiments were conducted for the hard-turning process with the Box-Behnken design. The validation of the surface roughness and cutting forces was performed with the obtained 2nd order polynomial regression model. The results showed that the surface roughness was strongly dependent upon the RPM. The diminution of the cutting force was attributed to the low feed rate and the depth of cut. On the basis of the RSM, optimized cutting conditions of RPM, feed rate, and depth of cut are 3440, 0.0352 [mm/rev], and 0.03 [mm]. In this optimal cutting condition, the surface roughness can be around Ra= 0.202 ??m

    Production of Transgenic Cloned Miniature Pigs with Membrane-bound Human Fas Ligand (FasL) by Somatic Cell Nuclear Transfer

    Get PDF
    Cell-mediated xenograft rejection, including NK cells and CD8+ CTL, is a major obstacle in successful pig-to-human xenotransplantation. Human CD8+ CTL and NK cells display high cytotoxicity for pig cells, mediated at least in part by the Fas/FasL pathway. To prevent cell-mediated xenocytotoxicity, a membrane-bound form of human FasL (mFasL) was generated as an inhibitor for CTL and NK cell cytotoxicity that could not be cleaved by metalloproteinase to produce putative soluble FasL. We produced two healthy transgenic pigs harboring the mFasL gene via somatic cell nuclear transfer (SCNT). In a cytotoxicity assay using transgenic clonal cell lines and transgenic pig ear cells, the rate of CD8+ CTL-mediated cytotoxicity was significantly reduced in transgenic pig's ear cells compared with that in normal minipig fetal fibroblasts. Our data indicate that grafts of transgenic pigs expressing membrane-bound human FasL control the cellular immune response to xenografts, creating a window of opportunity to facilitate xenograft survival

    Design, manufacturing, and characterization of high-performance lightweight bipolar plates based on carbon nanotube-exfoliated graphite nanoplatelet hybrid nanocomposites

    Get PDF
    We report a study on manufacturing and characterization of a platform material for high-performance lightweight bipolar plates for fuel cells based on nanocomposites consisting of carbon nanotubes (CNTs) and exfoliated graphite nanoplatelets (xGnPs). The experiments were designed and performed in three steps. In the preexperimental stage, xGnP-epoxy composite samples were prepared at various xGnP weight percentages to determine the maximum processable nanofiller concentration. The main part of the experiment employed the statistics-based design of experiments (DOE) methodology to identify improved processing conditions and CNT: xGnP ratio for minimized electrical resistivity. In the postexperimental stage, optimized combinations of material and processing parameters were investigated. With the aid of a reactive diluent, 20 wt.% was determined to the be maximum processable carbon nanomaterial content in the epoxy. The DOE analyses revealed that the CNT: xGnP ratio is the most dominant factor that governs the electrical properties, and its implications in relation to CNT-xGnP interactions and microstructure are elucidated. In addition, samples fabricated near the optimized condition revealed that there exists an optimal CNT: xGnP ratio at which the electrical performance can be maximized. The electrical and mechanical properties of optimal samples suggest that CNT-xGnP hybrid nanocomposites can serve as an alternative material platform for affordable, lightweight bipolar plates.open0
    corecore