572 research outputs found
Mathematical Modeling of Radiofrequency Ablation for Varicose Veins
We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one
Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model
<p>Abstract</p> <p>Background</p> <p>Alpha-1 antitrypsin (AAT) is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT) gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD) mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA).</p> <p>Methods</p> <p>DBA/1 mice were immunized with bovine type II collagen (bCII) to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT). Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF), antibodies against both bovine (bCII) and mouse collagen II (mCII) were tested by ELISA.</p> <p>Results</p> <p>Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8)-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially.</p> <p>Conclusion</p> <p>These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.</p
Platelet-activating Factor–mediated NF-κB Dependency of a Late Anaphylactic Reaction
Anaphylaxis is a life-threatening systemic allergic reaction with the potential for a recurrent or biphasic pattern. Despite an incidence of biphasic reaction between 5 and 20%, the molecular mechanism for the reaction is unknown. Using a murine model of penicillin V–induced systemic anaphylaxis, we show an autoregulatory cascade of biphasic anaphylactic reactions. Induction of anaphylaxis caused a rapid increase in circulating platelet-activating factor (PAF) levels. In turn, the elevated PAF contributes to the early phase of anaphylaxis as well as the subsequent activation of the nuclear factor (NF)-κB, a crucial transcription factor regulating the expression of many proinflammatory cytokines and immunoregulatory molecules. The induction of NF-κB activity is accompanied by TNF-α production, which, in turn, promotes late phase PAF synthesis. This secondary wave of PAF production leads eventually to the late phase of anaphylactic reactions. Mast cells do not appear to be required for development of the late phase anaphylaxis. Together, this work reveals the first mechanistic basis for biphasic anaphylactic reactions and provides possible therapeutic strategies for human anaphylaxis
Co-occurrence matrix analysis-based semi-supervised training for object detection
One of the most important factors in training object recognition networks
using convolutional neural networks (CNNs) is the provision of annotated data
accompanying human judgment. Particularly, in object detection or semantic
segmentation, the annotation process requires considerable human effort. In
this paper, we propose a semi-supervised learning (SSL)-based training
methodology for object detection, which makes use of automatic labeling of
un-annotated data by applying a network previously trained from an annotated
dataset. Because an inferred label by the trained network is dependent on the
learned parameters, it is often meaningless for re-training the network. To
transfer a valuable inferred label to the unlabeled data, we propose a
re-alignment method based on co-occurrence matrix analysis that takes into
account one-hot-vector encoding of the estimated label and the correlation
between the objects in the image. We used an MS-COCO detection dataset to
verify the performance of the proposed SSL method and deformable neural
networks (D-ConvNets) as an object detector for basic training. The performance
of the existing state-of-the-art detectors (DConvNets, YOLO v2, and single shot
multi-box detector (SSD)) can be improved by the proposed SSL method without
using the additional model parameter or modifying the network architecture.Comment: Submitted to International Conference on Image Processing (ICIP) 201
Variability of extracorporeal cardiopulmonary resuscitation utilization for refractory adult out-of-hospital cardiac arrest: an international survey study.
Objective: A growing interest in extracorporeal cardiopulmonary resuscitation (ECPR) as a rescue strategy for refractory adult out-of-hospital cardiac arrest (OHCA) currently exists. This study aims to determine current standards of care and practice variation for ECPR patients in the USA and Korea.
Methods: In December 2015, we surveyed centers from the Korean Hypothermia Network (KORHN) Investigators and the US National Post-Arrest Research Consortium (NPARC) on current targeted temperature management and ECPR practices. This project analyzes the subsection of questions addressing ECPR practices. We summarized survey.
Results: Overall, 9 KORHN and 4 NPARC centers reported having ECPR programs and had complete survey data available. Two KORHN centers utilized extracorporeal membrane oxygenation only for postarrest circulatory support in patients with refractory shock and were excluded from further analysis. Centers with available ECPR generally saw a high volume of OHCA patients (10/11 centers care for \u3e75 OHCA a year). Location of, and providers trained for cannulation varied across centers. All centers in both countries (KORHN 7/7, NPARC 4/4) treated comatose ECPR patients with targeted temperature management. All NPARC centers and four of seven KORHN centers reported having a standardized hospital protocol for ECPR. Upper age cutoff for eligibility ranged from 60 to 75 years. No absolute contraindications were unanimous among centers.
Conclusion: A wide variability in practice patterns exist between centers performing ECPR for refractory OHCA in the US and Korea. Standardized protocols and shared research databases might inform best practices, improve outcomes, and provide a foundation for prospective studies
MRI traceability of superparamagnetic iron oxide nanoparticle-embedded chitosan microspheres as an embolic material in rabbit uterus
PURPOSEWe aimed to compare polyvinyl alcohol (PVA) particles with calibrated superparamagnetic iron oxide (SPIO) nanoparticle-loaded chitosan microspheres in a rabbit model, specifically regarding the relative distribution of embolic agents within the uterus based on magnetic resonance imaging (MRI) and pathological evaluation.METHODSTwelve New Zealand white rabbits underwent uterine artery embolization using either standard PVA particles (45–150 µm or 350–500 µm) or calibrated SPIO-embedded chitosan microspheres (45–150 µm or 300–500 µm). MRI and histopathological findings were compared one week after embolization.RESULTSCalibrated SPIO-loaded chitosan microspheres 45–150 µm in size were detected on T2-weighted images. On histological analysis, calibrated SPIO-embedded chitosan microspheres were found in both myometrium and endometrium, whereas PVA particles were found only in the perimyometrium or extrauterine fat pads. A proportional relationship was noted between the calibrated SPIO-embedded chitosan microsphere size and the size of the occluded artery.CONCLUSIONCalibrated SPIO-embedded chitosan microspheres induced greater segmental arterial occlusion than PVA particles and showed great potential as a new embolic material. SPIO-embedded chitosan microspheres can be used to follow distribution of embolic particles through MRI studies
- …