60 research outputs found

    Dental stem cell therapy with calcium hydroxide in dental pulp capping

    Get PDF
    Calcium hydroxide has been extensively and steadily used for direct pulp capping in modern clinical dentistry. As it was known to have potential to induce hard tissue repair, this chemical has been applied to the exposed dental pulp and the hard tissue is expected to be regenerated above the pulp. During the reparative process of exposed pulp, primary odontoblasts that were lost as a result of extensive damage are replaced with newly differentiated odontoblast-like cells. This process is known to follow the sequential steps of proliferation, migration, and differentiation of progenitor cells. This research will examine the relationship between calcium hydroxide and the recruitment, proliferation, and mineralization of postnatal dental stem cells, obtained from an immature dental tissue of beagle dogs. Immunocytochemical staining and reverse transcriptase-polymerase chain reaction were used to identify the putative stem cell markers. Immunoblot analysis, wound healing assay, cell migration assay, and alizarin red staining were used to evaluate proliferation, migration, and mineralization capacity of the calcium hydroxide-treated stem cells. As an in vivo study, a combination of calcium hydroxide and autologous dental pulp stem cells (DPSCs) was applied for the treatment of intentionally created tooth defects on the premolars and the molars in beagle dogs to observe dentin regeneration. Ex vivo expanded DPSCs and periodontal ligament stem cells expressed STRO-1 and CD146, the mesenchymal stem cell markers. It was evident that calcium hydroxide increased recruitment, migration, proliferation, and mineralization of the DPSCs and periodontal ligament stem cells. Such results are valuable for future availability of DPSCs, which are recently focused as the stem cell reservoir for regeneration of dentin upon tooth injury, as well as for elucidation of the role of calcium hydroxide in pulp capping therapy.This work was supported by grants from the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2009-0066366) to Pill-Hoon Choung and by the Ministry of Health and Welfare, the Republic of Korea, through the Musculoskeletal Bioorgans Center Program (no. 0405-BO01-0204-0006)

    Comparison between Matched Related and Alternative Donors of Allogeneic Hematopoietic Stem Cells Transplanted into Adult Patients with Acquired Aplastic Anemia: Multivariate and Propensity Score-Matched Analysis

    Get PDF
    We retrospectively compared the outcomes of 225 patients with adult acquired aplastic anemia (AA) who underwent allogeneic hematopoietic stem cell transplantation (alloHSCT) from matched related donors (MRDs), and those treated by alloHSCT from alternative donors (ADs). Univariate and multivariate analyses of factors associated with survival were performed. Multivariate analysis showed that age at alloHSCT of โ‰ค31 years, MRD, successful engraftment, absence of acute graft-versus-host disease (aGVHD), and platelet engraftment at โ‰ค21 days, were independent predictors of longer survival. In addition, time to aGVHD and cumulative nonrelapse mortality (NRM) were better in MRD than in AD recipients. Using propensity score matching (PSM), we performed a case-control study comparing 25 patients in each group who underwent alloHSCT from MRDs and ADs. Pretransplantation clinical factors were well balanced in either group. Median survival time was similar, and no statistically significant difference in transplantation outcomes was apparent when MRD and AD recipients were compared. In conclusion, our results suggest that alloHSCT from an AD should be considered earlier in adult patients with AA who do not have an MRD

    Dental Stem Cell Therapy with Calcium Hydroxide in Dental Pulp Capping

    No full text
    Calcium hydroxide has been extensively and steadily used for direct pulp capping in modern clinical dentistry. As it was known to have potential to induce hard tissue repair, this chemical has been applied to the exposed dental pulp and the hard tissue is expected to be regenerated above the pulp. During the reparative process of exposed pulp, primary odontoblasts that were lost as a result of extensive damage are replaced with newly differentiated odontoblast-like cells. This process is known to follow the sequential steps of proliferation, migration, and differentiation of progenitor cells. This research will examine the relationship between calcium hydroxide and the recruitment, proliferation, and mineralization of postnatal dental stem cells, obtained from an immature dental tissue of beagle dogs. Immunocytochemical staining and reverse transcriptase-polymerase chain reaction were used to identify the putative stem cell markers. Immunoblot analysis, wound healing assay, cell migration assay, and alizarin red staining were used to evaluate proliferation, migration, and mineralization capacity of the calcium hydroxide-treated stem cells. As an in vivo study, a combination of calcium hydroxide and autologous dental pulp stem cells (DPSCs) was applied for the treatment of intentionally created tooth defects on the premolars and the molars in beagle dogs to observe dentin regeneration. Ex vivo expanded DPSCs and periodontal ligament stem cells expressed STRO-1 and CD146, the mesenchymal stem cell markers. It was evident that calcium hydroxide increased recruitment, migration, proliferation, and mineralization of the DPSCs and periodontal ligament stem cells. Such results are valuable for future availability of DPSCs, which are recently focused as the stem cell reservoir for regeneration of dentin upon tooth injury, as well as for elucidation of the role of calcium hydroxide in pulp capping therapy.This work was supported by grants from the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2009-0066366) to Pill-Hoon Choung and by the Ministry of Health and Welfare, the Republic of Korea, through the Musculoskeletal Bioorgans Center Program (no. 0405-BO01-0204-0006).

    Tight Junction Protein Expression-Inducing Probiotics Alleviate TNBS-Induced Cognitive Impairment with Colitis in Mice

    No full text
    A leaky gut is closely connected with systemic inflammation and psychiatric disorder. The rectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS) induces gut inflammation and cognitive function in mice. Therefore, we selected Bifidobacterium longum NK219, Lactococcus lactis NK209, and Lactobacillus rhamnosus NK210, which induced claudin-1 expression in TNBS- or lipopolysaccharide (LPS)-stimulated Caco-2 cells, from the fecal bacteria collection of humans and investigated their effects on cognitive function and systemic inflammatory immune response in TNBS-treated mice. The intrarectal injection of TNBS increased cognitive impairment-like behaviors in the novel object recognition and Y-maze tests, TNF-ฮฑ, IL-1ฮฒ, and IL-17 expression in the hippocampus and colon, and LPS level in the blood and feces, while the expression of hippocampal claudin-5 and colonic claudin-1 decreased. Oral administration of NK209, NK210, and NK219 singly or together decreased TNBS-impaired cognitive behaviors, TNF-ฮฑ and IL-1ฮฒ expression, NF-ฮบB+Iba1+ cell and LPS+Iba1+ cell numbers in the hippocampus, and LPS level in the blood and feces, whereas BDNF+NeuN+ cell and claudin-5+ cell numbers and IL-10 expression increased. Furthermore, they suppressed TNBS-induced colon shortening and colonic TNF-ฮฑ and IL-1ฮฒ expression, while colonic IL-10 expression and mucin protein-2+ cell and claudin-1+ cell numbers expression increased. Of these, NK219 most strongly alleviated cognitive impairment and colitis. They additively alleviated cognitive impairment with colitis. Based on these findings, NK209, NK210, NK219, and their combinations may alleviate cognitive impairment with systemic inflammation by suppressing the absorption of gut bacterial products including LPS into the blood through the suppression of gut bacterial LPS production and alleviation of a leaky gut by increasing gut tight junction proteins and mucin-2 expression

    Comparative study of LHX8 expression between odontoma and dental tissue-derived stem cells

    No full text
    Background: LHX8 (LIM-homeobox gene 8) is known as an important regulating factor in tooth morphogenesis. Odontoma is a mixed odontogenic tumor where epithelium and mesenchyme differentiated together, resulting in anomalous tooth structures. In this study, gene and protein expressions of LHX8 were analyzed in human odontoma-derived mesenchymal cells (HODC) compared to adult dental mesenchymal stem cells (aDSC), as well as morphological and histological characteristics of odontoma were analyzed. Methods: aDSCs were isolated from normal teeth, and HODCs were isolated from surgically removed odontoma mass. Morphological and histological evaluations were performed to compare between compound odontomas and normal premolars. RT-PCR and real-time PCR were performed to identify LHX8 mRNA expression in the HODCs and aDSCs. LHX8 protein expression levels were observed by immunoblotting and immunofluorescent staining. Results: The compound odontoma was composed of multiple tooth-like structures, which contained disorganized but recognizable enamel matrix, dentin, pulp, and cementum. LHX8 mRNA and LHX8 protein expressions were all higher in HODCs compared to those in aDSCs examined by RT-PCR, immunoblot, and immunofluorescent staining. Especially, real-time PCR showed 2.77-fold higher LHX8 expression in HODCs than in normal periodontal ligament stem cells (PDLSCs), while alveolar bone marrow stem cells (ABMSCs) expressed 0.12-fold LHX8 than PDLSCs. Conclusions: Based on these observations, LHX8 might play an important role in odontoma formation. This is the first report regarding the comparison of LHX8 expression between HODC and normal aDSCs and its overexpression in human samples. The specific mechanism of LHX8 in odontoma morphogenesis awaits further study.

    Platelet-Rich Fibrin is a Bioscaffold and Reservoir of Growth Factors for Tissue Regeneration

    No full text
    The platelet-rich fibrin (PRF) is known as a rich source of autologous cytokines and growth factors and universally used for tissue regeneration in current clinical medicine. However, the microstructure of PRF has not been fully investigated nor have been studied the key molecules that differ PRF from platelet-rich plasma. We fabricated PRF under Choukroun`s protocol and produced its extract (PRFe) by freezing at -80 degrees C. The conventional histological, immunohistological staining, and scanning electron microscopy images showed the microstructure of PRF, appearing as two zones, the zone of platelets and the zone of fibrin, which resembled a mesh containing blood cells. The PRFe increased proliferation, migration, and promoted differentiation of the human alveolar bone marrow stem cells (hABMSCs) at 0.5% concentration in vitro. From the results of proteome array, matrix metalloproteinase 9 (MMP9) and Serpin E1 were detected especially in PRFe but not in concentrated platelet-rich plasma. Simultaneous elevation of MMP9, CD44, and transforming growth factor beta-1 receptor was shown at 0.5% PRFe treatment to the hABMSC in immunoblot. Mineralization assay showed that MMP9 directly regulated mineralization differentiation of hABMSC. Transplantation of the fresh PRF into the mouse calvarias enhanced regeneration of the critical-sized defect. Our results strongly support the new characteristics of PRF as a bioscaffold and reservoir of growth factors for tissue regeneration.
    • โ€ฆ
    corecore