1,317 research outputs found

    Dynamic analysis of multiple-body floating platforms coupled with mooring lines and risers

    Get PDF
    A computer program, WINPOST-MULT, is developed for the dynamic analysis of a multiple-body floating system coupled with mooring lines and risers in the presence of waves, winds and currents. The coupled dynamics program for a single platform is extended for analyzing multiple-body systems by including all the platforms, mooring lines and risers in a combined matrix equation in the time domain. Compared to the iteration method between multiple bodies, the combined matrix method can include the full hydrodynamic interactions among bodies. The floating platform is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass coefficients, and radiation damping coefficients are calculated from the hydrodynamics program WAMIT for multiple bodies. Then, the time series of wave forces are generated in the time domain based on the two-term Volterra model. The wind forces are separately generated from the input wind spectrum and wind force formula. The current is included in Morison's drag force formula. In case of FPSO, the wind and current forces are generated using the respective coefficients given in the OCIMF data sheet. A finite element method is derived for the long elastic element of an arbitrary shape and material. This newly developed computer program is first applied to the system of a turret-moored FPSO and a shuttle tanker in tandem mooring. The dynamics of the turret-moored FPSO in waves, winds and currents are verified against independent computation and OTRC experiment. Then, the simulations for the FPSO-shuttle system with a hawser connection are carried out and the results are compared with the simplified methods without considering or partially including hydrodynamic interactions

    Effects of Corni fructus on ovalbumin-induced airway inflammation and airway hyper-responsiveness in a mouse model of allergic asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic asthma is a chronic inflammatory lung disease that is characterized by airway hyperresponsiveness (AHR) to allergens, airway oedema, increased mucus secretion, excess production of T helper-2 (Th2) cytokines, and eosinophil accumulation in the lungs. Corni fructus (CF) is a fruit of <it>Cornus officinalis </it>Sieb. Et. Zucc. (Cornaceae) and has been used in traditional Korean medicine as an anti-inflammatory, analgesic, and diuretic agent. To investigate the anti-asthmatic effects of CF and their underlying mechanism, we examined the influence of CF on the development of pulmonary eosinophilic inflammation and airway hyperresponsiveness in a mouse model of allergic asthma.</p> <p>Methods</p> <p>In this study, BALB/c mice were systemically sensitized to ovalbumin (OVA) by intraperitoneal (i.p.), intratracheal (i.t.) injections and intranasal (i.n.) inhalation of OVA. We investigated the effect of CF on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production, and OVA-specific immunoglobulin E (IgE) production.</p> <p>Results</p> <p>The CF-treated groups showed suppressed eosinophil infiltration, allergic airway inflammation, and AHR via reduced production of interleuin (IL) -5, IL-13, and OVA-specific IgE.</p> <p>Conclusions</p> <p>Our data suggest that the therapeutic effects of CF in asthma are mediated by reduced production of Th2 cytokines (IL-5), eotaxin, and OVA-specific IgE and reduced eosinophil infiltration.</p

    Antiasthmatic Effects of Hesperidin, a Potential Th2 Cytokine Antagonist, in a Mouse Model of Allergic Asthma

    Get PDF
    Background and Objective. The features of asthma are airway inflammation, reversible airflow obstruction, and an increased sensitivity to bronchoconstricting agents, termed airway hyperresponsiveness (AHR), excess production of Th2 cytokines, and eosinophil accumulation in the lungs. To investigate the antiasthmatic potential of hesperidin as well as the underlying mechanism involved, we studied the inhibitory effect and anti-inflammatory effect of hesperidin (HPN) on the production of Th2 cytokines, eotaxin, IL-17, -OVA-specific IgE in vivo asthma model mice. Methods. In this paper, BALB/c mice were systemically sensitized to ovalbumin (OVA) followed intratracheally, intraperitoneally, and by aerosol allergen challenges. We investigated the effect of HPN on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production and OVA-specific IgE production in a mouse model of asthma. Results. In BALB/c mice, we found that HPN-treated groups had suppressed eosinophil infiltration, allergic airway inflammation, and AHR, and these occurred by suppressing the production of IL-5, IL-17, and OVA-specific IgE. Conclusions. Our data suggest that the therapeutic mechanism by which HPN effectively treats asthma is based on reductions of Th2 cytokines (IL-5), eotaxin, OVA-specific IgE production, and eosinophil infiltration via inhibition of GATA-3 transcription factor

    Flow-Induced Voltage Generation Over Monolayer Graphene in the Presence of Herringbone Grooves

    Full text link
    While flow-induced voltage over a graphene layer has been reported, its origin remains unclear. In our previous study, we suggested different mechanisms for different experimental configurations: phonon dragging effect for the parallel alignment and an enhanced out-of-plane phonon mode for the perpendicular alignment (Appl. Phys. Lett. 102:063116, 2011). In order to further examine the origin of flow-induced voltage, we introduced a transverse flow component by integrating staggered herringbone grooves in the microchannel. We found that the flow-induced voltage decreased significantly in the presence of herringbone grooves in both parallel and perpendicular alignments. These results support our previous interpretation

    Tumor hypoxia and reoxygenation: the yin and yang for radiotherapy.

    Get PDF
    Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of ‘reoxygenation’ phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because ‘reoxygenation’ is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn’t it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy. © 2016. The Korean Society for Radiation Oncology.11Yscopu

    MMP-3 Contributes to Nigrostriatal Dopaminergic Neuronal Loss, BBB Damage, and Neuroinflammation in an MPTP Mouse Model of Parkinson\u27s Disease

    Get PDF
    The present study examined whether matrix metalloproteinase-3 (MMP-3) participates in the loss of dopaminergic (DA) neurons in the nigrostriatal pathway in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson\u27s disease with blood brain barrier (BBB) damage and infiltration of peripheral immune cells. Tyrosine hydroxylase (TH) immunostaining of brain sections from MPTP-treated mice showed that MPTP induced significant degeneration of nigrostriatal DA neurons. Moreover, FITC-labeled albumin detection and immunostaining revealed that MPTP caused damage to the BBB and increased the number of ED-1- and CD-3-immunopositive cells in the substantia nigra (SN). Genetic ablation of MMP-3 reduced the nigrostriatal DA neuron loss and improved motor function. This neuroprotective effect afforded by MMP-3 deletion was associated with the suppression of BBB disruption and a decrease in the number of ED-1- and CD-3-immunopositive cells in the SN. These data suggest that MMP-3 could play a crucial role in neurodegenerative diseases such as PD in which BBB damage and neuroinflammation are implicated

    Characterization of GDP-mannose Pyrophosphorylase from Escherichia Coli O157:H7 EDL933 and Its Broad Substrate Specificity

    Full text link
    GDP-mannose pyrophosphorylase gene (ManC) of Escherichia coli (E. coli) O157 was cloned and expressed as a highly soluble protein in E. coli BL21 (DE3). The enzyme was subsequently purified using hydrophobic and ion exchange chromatographies. ManC showed very broad substrate specificities for four nucleotides and various hexose-1-phosphates, yielding ADP-mannose, CDP-mannose, UDP-mannose, GDP-mannose, GDP-glucose and GDP-2-deoxy-glucose

    Gene-based copy number variation study reveals a microdeletion at 12q24 that influences height in the Korean population

    Get PDF
    AbstractHeight is a classic polygenic trait with high heritability (h2=0.8). Recent genome-wide association studies have revealed many independent loci associated with human height. In addition, although many studies have reported an association between copy number variation (CNV) and complex diseases, few have explored the relationship between CNV and height. Recent studies reported that single nucleotide polymorphisms (SNPs) are highly correlated with common CNVs, suggesting that it is warranted to survey CNVs to identify additional genetic factors affecting heritable traits such as height.This study tested the hypothesis that there would be CNV regions (CNVRs) associated with height nearby genes from the GWASs known to affect height. We identified regions containing >1% copy number deletion frequency from 3667 population-based cohort samples using the Illumina HumanOmni1-Quad BeadChip. Among the identified CNVRs, we selected 15 candidate regions that were located within 1Mb of 283 previously reported genes. To assess the effect of these CNVRs on height, statistical analyses were conducted with samples from a case group of 370 taller (upper 10%) individuals and a control group of 1828 individuals (lower 50%).We found that a newly identified 17.7kb deletion at chromosomal position 12q24.33, approximately 171.6kb downstream of GPR133, significantly correlated with height; this finding was validated using quantitative PCR. These results suggest that CNVs are potentially important in determining height and may contribute to height variation in human populations
    corecore