2,944 research outputs found
Syntheses and structural characterization of zirconium-tin and zirconium-lead binary and ternary systems
The binary zirconium-tin system was reinvestigated. The A15 phase appears to be a line phase with a Zr[subscript]4Sn composition. This phase is extremely unstable with oxygen contamination. The Zr[subscript]5Sn[subscript]3 (Mn[subscript]5Si[subscript]3-type) and Zr[subscript]5Sn[subscript]4 (Ti[subscript]5Ga[subscript]4-type) compounds are line phases below 1000°C, the latter being a self-interstitial phase of the former. ZrSn[subscript]2 is the tin-richest phase. There is an one-phase region between these phases with partial self-interstitials at high temperatures. The zirconium-lead system behaves similarly: there are an A15 phase with a Zr[subscript]~5.8Pb composition, Zr[subscript]5Pb[subscript]3 (Mn[subscript]5Si[subscript]3-type) and Zr[subscript]5Pb[subscript]4 (Ti[subscript]5Ga[subscript]4-type) compounds, and a high temperature solid solution between Zr[subscript]5Pb[subscript]\u3e3.5 and Zr[subscript]5Pb[subscript]4 from below 1000°C; however, the ZrSn[subscript]2 analogue is not formed;The Mn[subscript]5Si[subscript]3-type phases in these systems can accommodate third elements interstitially to form stoichiometric compounds Zr[subscript]5Sn[subscript]3Z (Z = B, C, N, O, Al, Si, P, S, Cu, Zn, Ga, Ge, As and Se) and Zr[subscript]5Pb[subscript]3Z (Z = Al, Si, P, S, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Ag, Cd, In, Sn, Sb and Te) as well as their self-interstitial derivatives. The stoichiometric nature of most of the interstitial phases was confirmed by structure analyses of single crystals for Z = C, O, and Ge in Zr[subscript]5Sn[subscript]3Z and Z=Zn and Pb in Zr[subscript]5Pb[subscript]3Z and of powder for Zr[subscript]5Sn[subscript]3Ga as well as by synthetic considerations. The crystal structures show strong zirconium-interstitial interactions. A substoichiometric interstitial phase also exists for Zr[subscript]5Sn[subscript]3S[subscript] x (0.5 ≤ x ≤ 1.0). Vapor phase transport reactions for Z = Al, Zn, and Pb in Zr[subscript]5Pb[subscript]3Z were successful with the transporting agent ZrCl[subscript]4;The systems Zr-Sn-T, T = Fe, Co and Ni, did not produce stoichiometric interstitial phases Zr[subscript]5Sn[subscript]3T. Instead, the interstitial phases for these elements are formed only with excess tin that partially occupies the interstitial site together with a T element. Reducing the amount of tin in these systems yields two new phases; Zr[subscript]5Sn[subscript] 2 + xFe[subscript] 1 - x (0 ≤ x ≤ 0.28) (W[subscript]5Si[subscript]3-type) and Zr[subscript]6Sn[subscript]2Fe (Zr[subscript]6Al[subscript]2Co-type) as characterized by X-ray single crystal analyses. A cobalt analogue for the latter was also synthesized. ftn*DOE Report IS-T-1505. This work was performed under contract No. W-7405-Eng-82 with the U.S. Department of Energy
The Light and Period Variations of the Eclipsing Binary BX Draconis
New CCD photometric observations of BX Dra were obtained for 26 nights from
2009 April to 2010 June. The long-term photometric behaviors of the system are
presented from detailed studies of the period and light variations, based on
the historical data and our new observations. All available light curves
display total eclipses at secondary minima and inverse O'Connell effects with
Max I fainter than Max II, which are satisfactorily modeled by adding the
slightly time-varying hot spot on the primary star. A total of 87 times of
minimum light spanning over about 74 yrs, including our 22 timing measurements,
were used for ephemeris computations. Detailed analysis of the O-C diagram
showed that the orbital period has changed in combinations with an upward
parabola and a sinusoidal variation. The continuous period increase with a rate
of +5.65 \times 10^-7 d yr^-1 is consistent with that calculated from the
Wilson-Devinney synthesis code. It can be interpreted as a mass transfer from
the secondary to the primary star at a rate of 2.74 \times 10^-7 M\odot yr^-1,
which is one of the largest rates for contact systems. The most likely
explanation of the sinusoidal variation with a period of 30.2 yrs and a
semi-amplitude of 0.0062 d is a light-traveltime effect due to the existence of
a circumbinary object. We suggest that BX Dra is probably a triple system,
consisting of a primary star with a spectral type of F0, its secondary
component of spectral type F1-2, and an unseen circumbinary object with a
minimum mass of M3 = 0.23 M\odot.Comment: 24 pages, including 5 figures and 9 tables, accepted for publication
in PAS
Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests
We evaluate Vickers hardness and true instrumented indentation test (IIT) hardness of 24 metals over a wide range of mechanical properties using just IIT parameters by taking into account the real contact morphology beneath the Vickers indenter. Correlating the conventional Vickers hardness, indentation contact morphology, and IIT parameters for the 24 metals reveals relationships between contact depths and apparent material properties. We report the conventional Vickers and true IIT hardnesses measured only from IIT contact depths; these agree well with directly measured hardnesses within ±6% for Vickers hardness and ±10% for true IIT hardness
Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display
This paper presents a haptic stylus interface with a
built-in compact tactile display module and an impact module
as well as empirical studies on Braille, button, and texture
display. We describe preliminary evaluations verifying the
tactile display's performance indicating that it can
satisfactorily represent Braille numbers for both the normal
and the blind. In order to prove haptic feedback capability of
the stylus, an experiment providing impact feedback mimicking
the click of a button has been conducted. Since the developed
device is small enough to be attached to a force feedback
device, its applicability to combined force and tactile
feedback display in a pen-held haptic device is also
investigated. The handle of pen-held haptic interface was
replaced by the pen-like interface to add tactile feedback
capability to the device. Since the system provides
combination of force, tactile and impact feedback, three
haptic representation methods for texture display have been
compared on surface with 3 texture groups which differ in
direction, groove width, and shape. In addition, we evaluate
its capacity to support touch screen operations by providing
tactile sensations when a user rubs against an image displayed
on a monitor
The coordination dynamics of bimanual circle drawing as a function of scaling movement amplitude
The purpose of this study was to investigate the influence of amplitude scaling on bimanual coordination in a circle drawing task. Eleven right-handed subjects traced the perimeter of 5 circles measuring 3, 6, 9, 12, and 15 cm in diameter under the following coordination conditions: (1) both hands move inward together (symmetric coordination pattern), and (2) both hands move counterclockwise together (asymmetric coordination pattern). In a set of self-paced trials, subjects traced each circle separately at a preferred frequency and separately for each coordination pattern. Although subjects matched the required amplitude of the target circles quite well, radial amplitude variability increased with increasing circle diameter. No transitions or movement reversals were observed in the self-paced trials, and the symmetric pattern was more stable than the asymmetric pattern. In a set of amplitude scaling trials, subjects continuously traced the 5 circles from small (3 cm) to big (15 cm) (SB) and from big to small (BS) at two fixed pacing frequencies (1.25 Hz and 1.5 Hz). Observed cycling frequency decreased with increasing circle diameter, and observed radial amplitude was most accurate when tracing the 9 cm diameter circle, with larger than required amplitude when tracing the 3 cm and 6 cm diameter circles, and smaller than required amplitude when tracing the 12 cm and 15 cm diameter circles. Radial amplitude variability also increased with increasing circle diameter in the amplitude scaling trials. The symmetric coordination pattern was more stable than the symmetric coordination pattern. Transitions from the asymmetric to symmetric coordination pattern as well as movement reversals were observed in both scaling directions. No transitions occurred while producing the symmetric pattern in any scaling direction or pacing frequency condition. The results show that amplitude scaling influenced the spatiotemporal aspects of bimanual circle drawing. Moreover, amplitude scaling induced more transitions than previous research that scaled movement frequency as a control parameter in bimanual circle drawing tasks
Regulation of Autoimmune Germinal Center Reaction by Tfh Cells and Application of Tfr-like Cells for the Treatment of Autoimmune B Cell Responses
Excessive follicular helper T (Tfh) cell responses to self-antigens are associated with antibody-mediated autoimmune diseases in humans including systemic lupus erythematosus (SLE). Numeral and functional aberrations of T regulatory T (Treg) cells are common in patients with autoimmune diseases. Although different types of immunosuppressive agents have been used clinically to treat antibody-mediated autoimmune diseases, they generally have side effects due to the lack of target-specificity. To minimalize the adverse effects, there is a need to develop target-specific therapeutics which specifically control auto-reactive B cell responses and auto-reactive Tfh cell responses. Recent studies unveiled that Foxp3+ Treg cells expressing CXCR5 can migrate into the germinal center (GC) zone where they specifically suppress GC reactions in vivo, presumably by directly suppressing B cells and/or Tfh cells. These CXCR5+ Foxp3+ Treg cells are termed as follicular regulatory T (Tfr) cells. Due to their ability to specifically suppress Tfh cell and GC B cell responses, use of Tfr cells may be a promising target-specific therapy for the treatment of autoantibody-mediated autoimmune diseases. To evaluate the role of Tfr cells in autoantibody-mediated autoimmune diseases, we employed a BXD2 mouse model of spontaneous autoimmune lupus. Immune balance between Tfh and Tfr cell responses is crucial for the prevention of self-destructive antibody generation. However, the contribution of Tfh cells and Tfr cells to auto-reactive B cell responses in the BXD2 strain had not been evaluated. Therefore, we examined Tfh, Tfr and other relevant immune cellular responses in this autoimmune strain. We found no differences in both the frequency of Th17 cells and the levels of IL-17 in the circulation between wild-type and BXD2 mice. By contrast, the frequency of Tfh cells was significantly increased, and the numbers of Tfh cells were positively correlated with the levels of autoantibodies. In addition, we observed that IL-21-producing Tfh cells, but not IL-17-producing Th17 cells, efficiently promoted the production of IgG from BXD2 B cells in vitro. These results supported the role of Tfh cells in the development of auto-reactive B cell responses. In addition, the frequency of Tfr cells was reduced in BXD2 mice. Therefore, imbalance between Tfh cells and Tfr cells in BXD2 mice likely caused the self-destructive antibody generation, thereby providing additional support that Tfr cell-based immunotherapy may ameliorate antibody-mediated autoimmunity. Unfortunately, sufficient numbers of Tfr cells that will be required for immunotherapy will be difficult to obtain since they are only found in low frequency in vivo. To address this problem, we employed retroviral transduction of CXCR5 onto Foxp3+ Treg cells, which are more abundant and less difficult to purify than Tfr cells. We termed these engineered CXCR5 overexpressing Foxp3+ Treg cells as eTfr cells. We demonstrated that transduction of CXCR5 in the eTfr cells did not affect the expression of other genes important for Treg or Tfh cell function. Furthermore, eTFr cells migrated in response to CXCL13 and had T cell suppressive capacity in vitro, demonstrating that eTfr cells maintained critical Tfr cell-like properties in vitro and were potentially a cell source for Tfr cell-based immunotherapy. To test the therapeutic potential of the eTfr cells, we performed in vivo adoptive co-transfer experiments using TCRβ-deficient mice. Unfortunately, the results from these in vivo investigations were inconclusive, indicating the further refinement of the model system will be required to determine the viability of the eTfr therapeutic approach for the autoantibody-mediated autoimmune disease. In summary, we demonstrated that imbalance between Tfh cell and Tfr cells and IL-21, produced by Tfh cells, lead to auto-reactive GC B cell responses in BXD2 mice, suggesting that similar imbalances may have relevance in human autoantibody-mediated autoimmune diseases. Moreover, eTfr cells can migrate in response to CXCL13 and suppress T cell responses in vitro, supporting the possibility that eTfr cells may provide a novel immunotherapeutic approach for the treatment of antibody-mediated autoimmune disorders
Behavior of Connections Between SHS Columns & W-section Beams
Connections between SHS (Square Hollow Section) columns and W-section beams are generally fabricated by welding with or without endplates in the factory. These welded connections possess some finite degree of rotational stiffness which falls between fully rigid and ideally pinned joints. The influence of partially restrained connections on structural response not only changes the moment distribution but also increases frame drift. In this paper, a series of connection tests joining SHS column and W-section beam were executed and the test results compared with theoretical values. A method to utilize nonlinear moment-rotation relations of beam-to-column connections in steel framed structures is proposed. For the problem of contact in endplate-type connections, a simple and efficient method is also introduced
- …