49 research outputs found

    Remission of intestinal BehƧet's disease treated with anti-tumor necrosis factor Ī± monoclonal antibody (Infliximab)

    Get PDF
    BehƧet's disease (BD) is a chronic relapsing multisystem disease characterized by oral ulceration, genital ulceration and ocular lesions. Gastrointestinal involvement is rare, often difficult to treat and associated with a high mortality rate. We treated a 47-year-old Korean man with BD who had a recurrent intestinal ulcer with tumor necrosis factor Ī± antibody (infliximab); he initially underwent right hemicolectomy due to uncontrolled intestinal bleeding. For patients with intestinal BD who fail to respond to conventional treatment, infliximab may be a safe and effective new therapeutic option

    Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis

    Get PDF
    Xylose reductase (XR) is the first enzyme in d-xylose metabolism, catalyzing the reduction of d-xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)āˆ’1), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44Ā gĀ Lāˆ’1Ā hāˆ’1 and xylitol yield of 96% at 44Ā h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83Ā gĀ Lāˆ’1Ā hāˆ’1; yield 59%)

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetĀ® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetĀ® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy

    Get PDF
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS). Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response

    The Effect of Absorbing Hot Write References on FTLs for Flash Storage Supporting High Data Integrity

    No full text
    ????????? ??????????????? ????????? ??????????????? ????????? ??????????????? ?????? ?????? ??????. ????????? ??????????????? ???????????? ????????? ??????, ???????????? ???????????? ????????? ????????? ????????????. ??? ????????? ????????? ???????????? ??????????????? ??????????????? ????????? ????????? ?????? ??????(FTL) ???????????? ????????? ????????? ????????? ????????????. ??? ??????????????? ?????????????????? ????????? ???????????? ???????????? ????????? ???????????? ?????? ?????? ????????? ????????? ??????????????? ????????? ????????? ????????? ????????????. ??????, ???????????? ?????? ????????? ?????? ?????? ????????? ????????? ????????? ???????????? ?????? FTL ????????? ????????? ????????? ????????????. ?????? ????????? ???????????? ????????? ?????? ?????? ????????? ?????? ?????? ????????? ????????? ????????????????????? FTL ????????? ?????? ???????????? ????????? ????????? ????????? ??? ????????? ????????????. ?????? ?????????, ???????????? ?????? ???????????? ?????? ?????? ????????? ?????????????????? FTL ???????????? ????????? ??????????????? ????????? ????????? ????????? ???????????? ??????????????? ????????? ??? ??? ??????.clos

    Viral Interferon Regulatory Factor 1 of Kaposi's Sarcoma-Associated Herpesvirus Interacts with a Cell Death Regulator, GRIM19, and Inhibits Interferon/Retinoic Acid-Induced Cell Death

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) plays a significant role in the development of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. The KSHV open reading frame K9 encodes the viral interferon (IFN) factor 1 (vIRF1), which downregulates IFN- and IRF-mediated transcriptional activation, and leads to cellular transformation in rodent fibroblasts and induction of tumors in nude mice. Using the yeast two-hybrid assay, we identified genes associated with retinoid-IFN-induced mortality-19 (GRIM19), which interacts directly with vIRF1, both in vivo and in vitro. The N-terminal region of vIRF1 is required for binding GRIM19. Colocalization of vIRF1 and GRIM19 was observed in 293T cells. The vIRF1 protein deregulates GRIM19-induced apoptosis in the presence of IFN/all-trans-retinoic acid (RA) and inhibits IFN/RA-induced cell death. Another DNA tumor viral protein, human papillomavirus type 16 E6, also binds GRIM19, suggesting that this is a general target of viral proteins. Our results collectively indicate that vIRF1 modulates IFN/RA-cell death signals via interactions with GRIM19

    The SIN Kinase Sid2 Regulates Cytoplasmic Retention of the S. pombe Cdc14-like Phosphatase Clp1

    Get PDF
    SummaryCdc14-family phosphatases play a conserved role in promoting mitotic exit and cytokinesis by dephosphorylating substrates of cyclin-dependent kinase (Cdk). Cdc14-family phosphatases have been best studied in yeast (for review, see [1, 2]), where budding yeast Cdc14 and its fission yeast homolog Clp1 are regulated partly by their localization; both proteins are thought to be sequestered in the nucleolus in interphase. Cdc14 and Clp1 are released from the nucleolus in mitosis, and in late mitosis conserved signaling pathways termed the mitotic exit network (MEN) and the septation initiation network (SIN) keeps Cdc14 and Clp1, respectively, out of the nucleolus through an unknown mechanism [3ā€“6]. Here we show that the most downstream SIN component, the Ndr-family kinase Sid2, maintains Clp1 in the cytoplasm in late mitosis by phosphorylating Clp1 directly and thereby creating binding sites for the 14-3-3 protein Rad24. Mutation of the Sid2 phosphorylation sites on Clp1 disrupts the Clp1-Rad24 interaction and causes Clp1 to return prematurely to the nucleolus during cytokinesis. Loss of Clp1 from the cytoplasm in telophase renders cells sensitive to perturbation of the actomyosin ring but does not affect other Clp1 functions. Because all components of this pathway are conserved, this might be a broadly conserved mechanism for regulation of Cdc14-family phosphatases
    corecore