598 research outputs found

    Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    Get PDF
    In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section and the number density of quartz molecules, the mass concentration of quartz in the atmosphere can be estimated from the quartz backscatter coefficient. The weight percentage from 40 to 70 % for quartz in the Asian dust was estimated from references. The vertical resolved mass concentration of dust was estimated by quartz mass concentration and weight percentage. We also present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. OPAC (Optical Properties of Aerosol and Clouds) simulations were conducted to calculate dust backscatter coefficient. The retrieved dust mass concentration was used as an input parameter for the OPAC calculations. These approaches in the study will be useful for characterizing the quartz dominated in the atmospheric aerosols and estimating vertical resolved mass concentration of dust. It will be especially applicable for optically distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian dust plume. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust

    Performance and structure of single-mode bosonic codes

    Get PDF
    The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce new codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat/binomial/GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multi-qubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a new multi-qudit code.Comment: 34 pages, 11 figures, 4 tables. v3: published version. See related talk at https://absuploads.aps.org/presentation.cfm?pid=1351

    Fundamental thickness limit of itinerant ferromagnetic SrRuO3_3 thin films

    Full text link
    We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO3_3 that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO3_3 films remain metallic even for a thickness of 2 unit cells (uc), but the Curie temperature, TC_C, starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the TC_C decrease to a decrease in the density of states (No_o). Namely, in the thin film geometry, the hybridized Ru-dyz,zx_yz,zx orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of No_o.Comment: 20 pages, 4 figure

    Normalizing flow-based deep variational Bayesian network for seismic multi-hazards and impacts estimation from InSAR imagery

    Full text link
    Onsite disasters like earthquakes can trigger cascading hazards and impacts, such as landslides and infrastructure damage, leading to catastrophic losses; thus, rapid and accurate estimates are crucial for timely and effective post-disaster responses. Interferometric Synthetic aperture radar (InSAR) data is important in providing high-resolution onsite information for rapid hazard estimation. Most recent methods using InSAR imagery signals predict a single type of hazard and thus often suffer low accuracy due to noisy and complex signals induced by co-located hazards, impacts, and irrelevant environmental changes (e.g., vegetation changes, human activities). We introduce a novel stochastic variational inference with normalizing flows derived to jointly approximate posteriors of multiple unobserved hazards and impacts from noisy InSAR imagery

    Resonant inelastic x-ray scattering study of holon-antiholon continuum in SrCuO2

    Full text link
    We report a resonant inelastic x-ray scattering study of charge excitations in the quasi-one-dimensional Mott insulator SrCuO2. We observe a continuum of low-energy excitations, in which a highly dispersive feature with a large sinusoidal dispersion (~1.1 eV) resides. We have also measured the optical conductivity, and studied the dynamic response of the extended Hubbard model with realistic parameters, using a dynamical density-matrix renormalization group method. In contrast to earlier work, we do not find a long-lived exciton, but rather these results suggest that the excitation spectrum comprises a holon-antiholon continuum together with a broad resonance.Comment: Final version to be published in Phys. Rev. Let

    Repression of FLOWERING LOCUS T Chromatin by Functionally Redundant Histone H3 Lysine 4 Demethylases in Arabidopsis

    Get PDF
    FLOWERING LOCUS T (FT) plays a key role as a mobile floral induction signal that initiates the floral transition. Therefore, precise control of FT expression is critical for the reproductive success of flowering plants. Coexistence of bivalent histone H3 lysine 27 trimethylation (H3K27me3) and H3K4me3 marks at the FT locus and the role of H3K27me3 as a strong FT repression mechanism in Arabidopsis have been reported. However, the role of an active mark, H3K4me3, in FT regulation has not been addressed, nor have the components affecting this mark been identified. Mutations in Arabidopsis thaliana Jumonji4 (AtJmj4) and EARLY FLOWERING6 (ELF6), two Arabidopsis genes encoding Jumonji (Jmj) family proteins, caused FT-dependent, additive early flowering correlated with increased expression of FT mRNA and increased H3K4me3 levels within FT chromatin. Purified recombinant AtJmj4 protein possesses specific demethylase activity for mono-, di-, and trimethylated H3K4. Tagged AtJmj4 and ELF6 proteins associate directly with the FT transcription initiation region, a region where the H3K4me3 levels were increased most significantly in the mutants. Thus, our study demonstrates the roles of AtJmj4 and ELF6 as H3K4 demethylases directly repressing FT chromatin and preventing precocious flowering in Arabidopsis

    Diffusion on a heptagonal lattice

    Full text link
    We study the diffusion phenomena on the negatively curved surface made up of congruent heptagons. Unlike the usual two-dimensional plane, this structure makes the boundary increase exponentially with the distance from the center, and hence the displacement of a classical random walker increases linearly in time. The diffusion of a quantum particle put on the heptagonal lattice is also studied in the framework of the tight-binding model Hamiltonian, and we again find the linear diffusion like the classical random walk. A comparison with diffusion on complex networks is also made.Comment: 5 pages, 6 figure

    Synchrotron X-Ray Studies of Surface Disordering

    Get PDF
    Contains an introduction and reports on three research projects.Joint Services Electronics Program Contract DAAL03-92-C-000
    • …
    corecore