29,821 research outputs found

    Non Mean-Field Quantum Critical Points from Holography

    Full text link
    We construct a class of quantum critical points with non-mean-field critical exponents via holography. Our approach is phenomenological. Beginning with the D3/D5 system at nonzero density and magnetic field which has a chiral phase transition, we simulate the addition of a third control parameter. We then identify a line of quantum critical points in the phase diagram of this theory, provided that the simulated control parameter has dimension less than two. This line smoothly interpolates between a second-order transition with mean-field exponents at zero magnetic field to a holographic Berezinskii-Kosterlitz-Thouless transition at larger magnetic fields. The critical exponents of these transitions only depend upon the parameters of an emergent infrared theory. Moreover, the non-mean-field scaling is destroyed at any nonzero temperature. We discuss how generic these transitions are.Comment: 15 pages, 7 figures, v2: Added reference

    Graphene field-effect transistors based on boron nitride gate dielectrics

    Full text link
    Graphene field-effect transistors are fabricated utilizing single-crystal hexagonal boron nitride (h-BN), an insulating isomorph of graphene, as the gate dielectric. The devices exhibit mobility values exceeding 10,000 cm2/V-sec and current saturation down to 500 nm channel lengths with intrinsic transconductance values above 400 mS/mm. The work demonstrates the favorable properties of using h-BN as a gate dielectric for graphene FETs.Comment: 4 pages, 8 figure

    Angle Dependence of Landau Level Spectrum in Twisted Bilayer Graphene

    Full text link
    In the context of the low energy effective theory, the exact Landau level spectrum of quasiparticles in twisted bilayer graphene with small twist angle is analytically obtained by spheroidal eigenvalues. We analyze the dependence of the Landau levels on the twist angle to find the points, where the two-fold degeneracy for twist angles is lifted in the nonzero modes and below/above which massive/massless fermion pictures become valid. In the perpendicular magnetic field of 10\,T, the degeneracy is removed at θdeg3\theta_{{\rm deg}}\sim 3^\circ %angles around 3 degrees for a few low levels, specifically, θdeg2.56\theta_{\rm deg}\simeq 2.56^\circ for the first pair of nonzero levels and θdeg3.50\theta_{\rm deg}\simeq 3.50^\circ for the next pair. Massive quasiparticle appears at θ<θc1.17\theta<\theta_{{\rm c}}\simeq 1.17^\circ in 10\,T, %angles less than 1.17 degrees. which match perfectly with the recent experimental results. Since our analysis is applicable to the cases of arbitrary constant magnetic fields, we make predictions for the same experiment performed in arbitrary constant magnetic fields, e.g., for B=40\,T we get θc2.34\theta_{\rm c}\simeq 2.34^\circ and the sequence of angles θdeg=5.11,7.01,8.42,...\theta_{\rm deg} = 5.11, 7.01, 8.42,... for the pairs of nonzero energy levels. The symmetry restoration mechanism behind the massive/massless transition is conjectured to be a tunneling (instanton) in momentum space.Comment: 8 pages, 7 figures, version to appear in PR

    Chaotic universe in the z=2 Hovava-Lifshitz gravity

    Full text link
    The deformed z=2 Horava-Lifshitz gravity with coupling constant w leads to a nonrelativistic "mixmaster" cosmological model. The potential of theory is given by the sum of IR and UV potentials in the ADM Hamiltonian formalism. It turns out that adding the UV-potential cannot suppress chaotic behaviors existing in the IR-potential.Comment: 7 pages, 5 figures, version to appear in PR
    corecore