146 research outputs found
Androgen Receptor-Dependent and -Independent Mechanisms Involved in Prostate Cancer Therapy Resistance
Despite the initial efficacy of androgen deprivation in prostate cancer, virtually all patients progress to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) signaling is critically required for CRPC. A new generation of medications targeting AR, such as abiraterone and enzalutamide, has improved survival of metastatic CRPC (mCRPC) patients. However, a significant proportion of patients presents with primary resistance to these agents, and in the remainder, secondary resistance will invariably develop, which makes mCRPC the lethal form of the disease. Mechanisms underlying progression to mCRPC and treatment resistance are extremely complex. AR-dependent resistance mechanisms include AR amplification, AR point mutations, expression of constitutively active AR splice variants, and altered intratumoral androgen biosynthesis. AR-independent resistance mechanisms include glucocorticoid receptor activation, immune-mediated resistance, and neuroendocrine differentiation. The development of novel agents, such as seviteronel, apalutamide, and EPI-001/EPI-506, as well as the identification and validation of novel predictive biomarkers of resistance, may lead to improved therapeutics for mCRPC patients
Posterior reversible encephalopathy syndrome induced by enzalutamide in a patient with castration-resistant prostate cancer
Posterior reversible encephalopathy syndrome (PRES) is a clinical/radiological syndrome characterized by symptoms that can include seizure, headache, impaired vision and hypertension, and can be confirmed by magnetic resonance imaging. Numerous reports have emerged that describe PRES in cancer patients. The list of medications linked to PRES can include traditional cytotoxic chemotherapeutics (e.g., cisplatin, cyclophosphamide, and high-dose corticosteroids), newer agents that target the vascular endothelial growth factor pathway (e.g., bevacizumab, sunitinib, and pazopanib), and supportive care mediations (e.g., granulocyte colony stimulating factors and erythropoietin). We report, for the first time, a case of PRES that is secondary to treatment with enzalutamide, a potent androgen receptor antagonist used in the treatment of metastatic castration-resistant prostate cancer. Enzalutamide is approved for the treatment of both docetaxel-pretreated and chemotherapy-naïve metastatic castration-resistant prostate cancer. Enzalutamide has been previously linked to the increased risk of seizures. Clinicians should be aware that, in rare cases, patients treated with enzalutamide could potentially be at risk for PRES. If symptoms suggestive of PRES arise in patients receiving enzalutamide, the drug should be discontinued immediately and the diagnostic process should be initiated
Mechanisms of acquired resistance to androgen receptor targeting drugs in castration-resistant prostate cancer
After initial response to androgen receptor targeting drugs abiraterone or enzalutamide, most patients develop progressive disease and therefore, castration resistant prostate cancer (CRPC) remains a terminal disease. Multiple mechanisms underlying acquired resistance have been postulated. Intratumoral androgen synthesis may resume after abiraterone treatment. A point mutation in the ligand binding domain of androgen receptor may confer resistance to enzalutamide. Emergence of androgen receptor splice variants lacking the ligand binding domain may mediate resistance to abiraterone and enzalutamide. Steroid receptors such as glucocorticoid receptor may substitute for androgen receptor. Drugs with novel mechanisms of action or combination therapy, along with biomarkers for patient selection, may be needed to improve the therapy of CRPC
Cutaneous adverse reactions in B-RAF positive metastatic melanoma following sequential treatment with B-RAF/MEK inhibitors and immune checkpoint blockade or vice versa. A single-institutional case-series
Background
With the advent of immune-checkpoint inhibitors and targeted treatments (TT), there have been unprecedented response rates and survival in advanced melanoma, but the optimal sequencing of these two treatments modalities is unknown. Combining or sequencing these agents could potentially result in unique toxicities. Cutaneous adverse events (CAE) after sequential exposure to these agents represents one toxicity that needs further description.
Methods
After retrospectively reviewing charts of patients from 2015 to 2018, we identified six patients who experienced CAEs after recent exposure to sequential immunotherapy and TT or vice versa for the treatment for metastatic melanoma at the University of North Carolina, Chapel Hill. Skin biopsies were available in five patients.
Results
Five patients received TT after immunotherapy, and one patient received immunotherapy after TT. TT consisted of vemurafenib/cobimetinib (V/C) in five patients with four patients starting V/C immediately before manifesting with a CAE. In patients receiving V/C after immunotherapy, the median time from beginning V/C to development of CAE was 14.5 days. The clinical presentation of diffuse morbilliform rash, fevers, hypotension, and end-organ damage raised concern for Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) syndrome. Histopathological features of lympho-eosinophilic infiltrate were supportive of a drug eruption. Immunotherapy or TT were re-initiated in five patients within 1–8 weeks after resolution of the index CAE. This resulted in two patients re-experiencing the CAE. Both of these patients were off prednisone at the time of therapy re-initiation, whereas none of the patients who were restarted on targeted therapy with a steroid overlap had a rash recurrence.
Conclusions
Sequential treatment using immunotherapy and TT, especially the sequence of V/C after immunotherapy appears to be the most common trigger for CAE with a median time to onset of approximately 2 weeks. Although the clinical presentation of these CAEs can be dramatic, they respond well to prednisone therapy. This unique presentation suggests that it may be reasonably safe to re-challenge certain patients with a steroid overlap after rash resolution
Zinc-induced PTEN Protein Degradation through the Proteasome Pathway in Human Airway Epithelial Cells
The tumor suppressor PTEN is a putative negative regulator of the phosphatidylinositol 3-kinase/Akt pathway. Exposure to Zn2+ ions induces Akt activation, suggesting that PTEN may be modulated in this process. Therefore, the effects of Zn2+ on PTEN were studied in human airway epithelial cells and rat lungs. Treatment with Zn2+ resulted in a significant reduction in levels of PTEN protein in a dose- and time-dependent fashion in a human airway epithelial cell line. This effect of Zn2+was also observed in normal human airway epithelial cells in primary culture and in rat airway epithelium in vivo. Concomitantly, levels of PTEN mRNA were also significantly reduced by Zn2+ exposure. PTEN phosphatase activity evaluated by measuring Akt phosphorylation decreased after Zn2+ treatment. Pretreatment of the cells with a proteasome inhibitor significantly blocked zinc-induced reduction of PTEN protein as well as the increase in Akt phosphorylation, implicating the involvement of proteasome-mediated PTEN degradation. Further study revealed that Zn2+-induced ubiquitination of PTEN protein may mediate this process. A phosphatidylinositol 3-kinase inhibitor blocked PTEN degradation induced by Zn2+, suggesting that phosphatidylinositol 3-kinase may participate in the regulation of PTEN. However, both the proteasome inhibitor and phosphatidylinositol 3-kinase inhibitor failed to prevent significant down-regulation of PTEN mRNA expression in response to Zn2+. In summary, exposure to Zn2+ ions causes PTEN degradation and loss of function, which is mediated by an ubiquitin-associated proteolytic process in the airway epithelium
Rapamycin inhibits cell proliferation in type I and type II endometrial carcinomas: A search for biomarkers of sensitivity to treatment
Our goal was to evaluate the effect of rapamycin, an mTOR inhibitor, in type I and II human endometrial cancer tumor explants
Mutation of Androgen Receptor N-Terminal Phosphorylation Site Tyr-267 Leads to Inhibition of Nuclear Translocation and DNA Binding
Reactivation of androgen receptor (AR) may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity
Arrays of high-aspect ratio microchannels for high-throughput isolation of circulating tumor cells (CTCs)
Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12–25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs
A phase 2 study of estramustine, docetaxel, and bevacizumab in men with castrate-resistant prostate cancer: Results from Cancer and Leukemia Group B Study 90006
The use of docetaxel prolongs survival for patients with castrate resistant prostate cancer (CRPC). Inhibition of vascular endothelial growth factor (VEGF) with bevacizumab may further enhance the anti-tumor effect of docetaxel and estramustine in patients with CRPC
Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges
- …